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ABSTRACT

This study reveals the relationship between the-physical parameters
and the principal 1imit cycle oscillation of a pulse-modulated feedback
system of the type used for attitude control in satellites. Explicit
relationships, derived analytically as they are here, have previously
been known only for a simpler class of system, and those relationships
were derived by analytical methods other than the one developed here.

The pulse actuation used in this system implies there will be a
limit cycle oscillation about the equilibrium point. A two-pulse limit
cycle is the most efficient and most accurate one possible. Therefore,
the principal goal of this work is to establish the necessary and suf-
ficient conditions on the various physical parameters in the system to
insure the existence and stability of the two-pulse limit cycle
oscillation.

An integral-pulse-frequency modulator is established as having the

requisite steady-state dynamic characteristics for the existence of the

two-pulse limit cycle. The stability of the limit cycle is then determined

from a transient analysis of the system, using a method based on the geo-
metrical properties of the state transition equations. Previously, sta-
bility analysis of this nature has been approached using Lyapunov-1like
methods or conventional frequency domain techniques.

The conditions under which four-pulse, six-pulse, and higher order
limit cycle oscillations can occur are also determined, and their exis-

tence is verified experimentally, using digital simulation.
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SYMBOLS

a rate circuit lead ratio, seconds

A ) nominal threshold of integrator output, KIKpa2/4J
volts

(1+y)A actual threshold of integrator output, volts

Bj curves separating the Ri’ j=1,2,3,4 and 5

e input voltage of integrator, volts

eN input voltage to dead zone element, volts

eo output voltage of integrator, a state variable, volts

eS input voltage to rate circuit

F state transition function, Ziq = F(zk,bk)

F, state transition function for =z € R,, 1 = 1,2,3,4,5,
and 6

h duration of thruster pulse, seconds

J moment of inertia of vehicle about the controlled axis,

kilogram (meter)

K attitude sensor gain, volts/radian

K integrator gain, (seconds)_l, K =1

2 normalized lead ratio, ap/JQd, dimensionless

m torque on controlled body about the controlled axis,

newton-meters

M torque level of thruster, newton-meters

Ri regions in the state plane, i =1,2,3,4,5, and 6
R; a subset of region R5

t time, seconds

tk instant of torque pulse emission, k = 0,1,2,...

T period of symmetrical two-pulse 1limit cycle, seconds
u(t—tj) unit impulse occuring at t = tj
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O(tk)

G(tk)

II

I11

normalized state variable G/Od, dimensionless

x(t) for t = t&
k

normalized state variable E;E , dimensionless
y(t) for t = t;
t for t = t~
y(t) x

state vector (x,y)

il
o+

state vector for t K’ (xk,yk)

state vector for t = t;, (Xk;y;)

fractional error in integrator threshold setting,

" dimensionless

- t f =
sgn[eo( )] or t tk+1

time interval between pulse emissions, (tk+1—th
seconds

attitude displacement of controlled body from desired
null position, a state variable, radians

angular velocity of controlled body, a state variable,
radians/second

permissible attitude error attributable to dead zone

8 for t

é for t

+
t
k
+
t
k
strength of thruster pulse, Mh, newton-meter-seconds

the region in the state plane for which e > 0

the region in the state plane for which e < 0
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o

the region in the state plane for which e
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Chapter I

INTRODUCTION

A. Attitude Control of Rigid Body Satellites

It has been shown that the angular position, or attitude, of an
orbiting satellite is controlled efficiently and reliably by torquing
devices which operate in an on-off fashion [1,2,3,4,5]. An important
class of on-off torquing devices is the pulsed type. In a control sys-
tem using a pulsed torquer, the controller (or pulse modulator) emits
signals to the torquing device, which is commonly a cold gas expulsion
valve, at discrete instants of time. In response to the controller sig-
nal, the valve opens rapidly, remains open for a short time, and then
closes rapidly. As a result of the expulsion of this small amount of
gas, the controlled body acquires a small change in its angular momentum.
In a rigid body that is not spinning, this is manifested in a small change
in angular velocity about the controlled axis. A block diagram for a
typical attitude control system is shown in Fig. 1.

The controlled body is taken here to be rigid and to spin at a low
enough rate that the torque applied about the controlled axis can pro-
duce motion essentially about that axis only [2]. The change in mass,
due to the loss of gas, is neglected. Thus the dynamic behavior of the
body about the controlled axis is described by Eq. (1.1) where J 1is the
moment of inertia

JE(t) = m(t) (1.1)

of the body and m(t) 1is the torque on the body. m(t) includes both
the torque produced by the expelled gas and any external torques such

as those due to the gradient of the gravitational field, unbalanced solar
radiation pressure, unbalanced aerodynamic drag, and micrometeorite im-
pact. All of these external torques are neglected here.

The angular position sensor, which is typically a gyroscope, a star
tracker, or a horizon sensor, produces a signal proportional to 6, the
angular displacement of the body from its equilibrium position. The sen-
sor signal es(t) is contaminated with noise, the influence of which is

diminished by the use of a '"dead-zone element" as shown in Fig. 1.
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Fig. 1. PULSE-MODUIATED ATTITUDE CONTROL SYSTEM.



Although the noise content of es(t) is neglected here, the dead~zone
element is included.

No external torque dependent on the angular velocity é. is avail-
able, so it is necessary to provide a "damping" torque through the con;
trol valve. This is accomplished in much the same way as it is in a
servomechanism, i.e., by a rate circuit installed in the feedback path,

having the dynamic properties described by Eq. (1.2). a is called the
eN(t) = K[6(t) + ab(t)] (1.2)

lead ratio of the rate circuit, and K is the sensitivity of the posi-
tion sensor.

- Pulse modulators which operate solely upon the input signal e(t),
in accordance with a preset logic carried inside the modulator, are in
common use in modern satellites and in many other control systems. Some
of these modulate the pulse strength (or pulse duration), some the
interval between successive "firing signals,'" and some modulate both of
these quantities together. Common names for these modulation schemes
are pulsewidth (PW), pulse frequency (PF), and pulsewidth-pulse frequency
(PWPF). Substantial literature on various aspects of the dynamic be-
havior of control systems employing such devices exists [6,7,8,9,10].

In satellite attitude control systems, reliable modulation of the
pulse duration is not possible for durations less than a given amount,
which is typically 10 to 50 ms for gas valves. Because of this minimum
pulse duration, the angular velocity of the controlled body cannot be
changed by an amount less than p/J, where u 1is the strength of the
minimum pulse. Therefore, when the controlled body is near its equilib-
rium position, it will oscillate in a limit cycle, except, of course, in
the unlikely situation where e = O, é = 0 and no disturbing torques
are present. These limit cycle oscillations are the subject of the stud-
ies described in this dissertation.

It is well-known from previous work [2,7] that attitude control sys-
tems similar to that described in Fig. 1 can exhibit 1limit cycle oscilla-
tions about the equilibrium point having two pulses of torque per cycle,

four pulses per cycle, six pulses, and so forth, depending upon the initial



values of 6 and ©O. It is ordinarily assumed that the two-pulse limit
cycle 'is the most desirable because for a given maximum excursion of &
the period of the limit cycle is maximized and therefore the fuel expended
for control in a lengthy mission is minimized.

It has not been precisely known how the physical parameters of the
system, J, i, a, K, Qd’ and the modulator scheme are related to the
limit cycle behavior of the system. 1In particular, it has not been known
how these system characteristics can be combined fo guarantee that no
limit cycle except the two—ﬁulse limit cycle will exist. Farrenkopf,
Sabroff, and Wheeler, in 1963 [2] made essentially this determination
for a system similar to that in Fig. 1 but without the nonlinear dead-
zone element. They used a modified Lyapunov theorem [11] to establish
the existence of limit cycles in a given region near the equilibrium
position and investigated the stability of the limit cycles by point
transformation techniques [121.

In engineering practice, the determination of the limit cycle be-
havior of attitude control systems is ordinarily done empirically, using
simulators., This approach results in practical solutions to specific
design problems but does not contribute very much to an understanding of
the general nature of the dynamic behavior of such systems. An analyti-
cal study, such as that presented here, even though it is done on a simple,
idealized system which is devoid of many of the features found in practi-
cal systens, provides a foundation for understanding experimental results
and, further, fof making design modifications to improve the performance

of the system.

B. Statement of Research Problem

Figure 1 describes the system studied here. Several significant
practical features of attitude control systems have been suppressed in
this work to make analysis possible. Noise in the sensor signal es(t)
is not considered. External disturbance torques are not considered. It
is assumed that the feedback channel transmission characteristics are
symmetrical although nonlinear. The valve is also assumed to produce
pulses in the positive sense which are equal in strength to those in the

negative sense. It is further assumed that the pulses are of uniform



strength (corresponding to the minimum possible pulse duration) and that
their duration is short enough compared to the interval between pulses
that the pulse can be represented mathematically as an impulse. Thus,
m(t) is a sequence of impulses of uniform strength occurring at instants
of time tk’ and with algebraic signs which are determined by the logi-
cal scheme in the pulse modulator. Pulsewidth-pulse-frequency modulators
approximate this behavior near the equilibrium point. Because the torque
pulses are approximated by impulses, the angular velocity é(t) is dis-
continuous at each firing instant.

The specific research tasks which were accomplished and which are

described in this dissertation are defined as:

(1) Modulator. It is necessary to find a modulation scheme that
will produce a sequence of produce a sequence of pulses in
response to e(t) which will move the body in a two-pulse
limit cycle mode of oscillation, having an acceptable ampli-
tude. A modulation scheme, determined on the basis of the
steady-state 1limit cycle behavior of the system, guarantees
the existence of the two-pulse limit cycle, but it does not
determine the transient properties of the system. The tran-
sient behavior could exhibit higher order limit cycle oscilla-
tions, depending upon the initial conditions, or it could show
the two-pulse limit cycle to be unstable.

(2) Stability of Two~Pulse Limit Cycles. The primary goal of this
work is to establish the precise relationship between the sys-
tem parameters and the stability of the two-pulse limit cycle.
This problem is approached in such a way that the existence
and stability of the two-pulse limit cycle are established for
initial conditions of the state vector in a region containing
the equilibrium point.

(3) Convergence of the State Trajectory. It is essential to deter-
mine the conditions under which the state trajectory, which
describes the motion of the controlled body, will converge with
time to the stable two-pulse 1limit cycle. Initial conditions
for the state vector must be arbitrary.

(4) Existence of Higher Order Limit Cycles. If the conditions for
the existence and stability of two-pulse 1limit cycles are not
met, then perhaps stable higher order limit cycles exist. The
existence of such 1limit cycles and the conditions under which
they occur are established experimentally as a natural extension
of the work on the two-pulse limit cycle.

The resolultion of these questions is described in Chapters 1I, III,

IV, and V, and a summary of the significant features of the work is in



Chapter VI. Chapter VII outlines several research problems for future
work which might extend the usefulness of the stability analysis technique

developed here.



Chapter II

THE MODULATOR

A, Necessary Input-Output Characteristic

The terminal characteristics of the modulator necessary for the
existence of a two-pulse limit cycle are determined here, using a scheme
somewhat like the describing function method in elementary control theory
[13,14]). The method employed is an exact one, however, whereas the de-
scribing function method is an approximate one.

It is assumed that the system is in a steady~-state limit cycle oscil-
lation of the desired amplitude, so that m(t) consists of a sequence of
pulses of alternating sign occurring at the required instants. The resul-
tant feedback signal e(t) is calculated, and this is the input of the
modulator.

Figure 2 shows the approximate torque pulse applied to the controlled
body by the gas jets in response to a firing signal occurring at time tk.
A "dead-time" occurs right after
tk because some time is re-
quired for the valve to open
and for gas flow to be estab-

lished in the conduit leading

from the valve to the exhaust

orifice. For the study of limit

Fig. 2. TORQUE PULSE OCCURRING AT

cycle behavior, this dead-time t = tk.
can usually be neglected and
the actual pulse approximated

by a rectangular pulse M

newton-meters in amplitude and

JRE—

h seconds in duration, as shown

in Fig. 3. The strength of the

pulse Mh is taken to be the T T T feen

area under the m(t) curve in
Fig. 3. FIRST APPROXIMATION

Fig. 2. It is further assumed TO TORQUE PULSE.

that h is very small compared

to the interval between pulses,



so that m(t) may be represented by a series of impulses having strength

p = Mh, as shown in Fig. 4. Here, it is assumed that the interval be-

tween pulses is uniform, so the limit cycle is symmetrical about the equi-
tk).

With m(t) as shown in Fig. 4,

librium position with a period T = (tk+2 -

the angular velocity of the con-

min g g trolled body will be discontinuous
Yht Yhe3 —y at the firing instants and constant

' e+2 between them, és shown in Fig. 5.

- - The corresponding 6(t) has the

triangular waveform shown in Fig. 6.
Fig. 4. SECOND APPROXIMATION

At thi oint, it is possible t
TO PULSE TRAIN m(t). 1S point, it 18 possible 1o

choose the amplitude of 6(t) to
satisfy the performance requirements
of the attitude control system. This
is an arbitrary choice, but it would
likely be made on the basis of the
dead-zone width. For this study,

m Bi1) . .
57 1 ] the amplitude is taken to be equal
] } |
] ] ! to the allowable static position
— —— — t
tk tetl k2 tk+3 0 Th h
, ; ' i error q° us we have
| ! l i
2J
T 2o (2.1)
8J d )
Fig. 5. 6(t) FOR SYMMETRICAL
LIMIT CYCLE OSCILIATION. In what follows, it turns out that

this is not a crucial assumption,
but it is a convenient one to make at this point because it defines the
period T in terms of the parameters ., J, and Gd-
eN(t) is just a linear combination of 6&(t) and é(t). Its wave-
form is shown in Fig. 7. eN(t) is the input to the dead-zone element,
so e(t) may be determined from eN(t) if the characteristics of the
dead-zone element are known. The width of the dead zone is chosen to

correspond to the allowable static error, so it is 2 Ked, the half-width
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pT

8J

1 1 | | t
tk}/ et \ tkt2/ tk+3

Fig. 6. ©6(t) FOR SYMMETRICAL
LIMIT CYCLE OSCILLATION.

en(D=K[6(N+ad(1)]

B

«[oe- 5]

—J'l: 'k+| 'k+2/ 'k+3\\ f '
I
|

Fig. 7. eN(t) FOR SYMMETRICAL
LIMIT CYCLE OSCILLATION.

being Ked The slope of the straight portions of the e, eN character-

istic curve is taken to be 1. The mathematical description of the dead-

zone element is

= - K6
e(t) eN(t) K d for eN > Ked
e(t) =0 for —KQd < ey < KGd 2.2)
e(t) = eN(t) + K9d for eN < —KQd

If the waveform of e _(t) 1is used in (2.2), the resultant waveform for

e(t) 1is that shown in Fig. 8. The input-output behavior of the modula-

tor for steady-state, symmetrical, two-pulse limit cycle oscillations is

thus defined by Figs. 8 [the input e(t)] and 4 [the output m(t)]. The

internal mechanism of the modulator must be such that it will produce
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L
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q f—

Fig. 8. e(t) FOR SYMMETRICAL LIMIT CYCLE OSCILLATION.

this specific input-output behavior, whatever its behavior might be for
different input signals. The selection of a specific modulation scheme

is described in the following section.

B. The Integral Pulse Frequency Modulator

There is no unique modulation scheme that will satisfy the required
input~output characteristic described in Section II.A. A simple timing
device, emitting pulses of alternating signs at uniform intervals of
4J9d/p sec would have the required behavior even if e(t) were in no
way connected to the timing device. A threshold detector that would emit
a pulse whenever e(t) reached a level of Kpua/2J V  would also exhibit
the same behavior. In choosing a modulation scheme, the behavior of the
modulator under operating conditions other than limit cycle oscillation
must also be considered. The timing device suggested above would clearly
be unsuitable if the controlled body should be displaced from its equilib-
rium position, because that device would be insensitive to the actual mo-
tion of the controlled body. The threshold detector would emit pulses
if a short but large amplitude pulse of noise éhould appear on e(t).

For these reasons those two modulation schemes are unsatisfactory.

A modulation scheme, known to have some desirable attributes in
practical systems, is the integral pulse frequency (IPF) modulator--so
named, apparently, because a constant voltage applied to its input will
produce a sequence of pulses at uniform intervals, the frequency of the
sequence being proportional to the constant applied voltage [2,6,7]. Of

course, if e(t) 1is not held constant, then m(t) may not be periodic.

10



The diagram in Fig. 9 illustrates the operation of the IPF modula-
tor. 1In between firing instants, eo(t) is proportional to the integral

of e(t)

eo(t) = Klfe(t) dt (2.3)

Here KI is the integrator gain having the dimension (sec)—l. KI may
be set equal to unity with the loss of no essential feature of the sub-
sequent analysis. When the magnitude of eo(t) reaches the threshold
value A, a fire signal is sent to the gas valve, and the integrator out-
put voltage e, is reset to zero. The instant the valve fires is

t = tk, and here it is assumed to coincide with the instant eo reaches
A. Thus, |e (t)] =A and e (t)) = O.

The IPF modulator is selected for study here because it is simple,
because it is a device used in many existing control systems, and because
it is representative of a larger class of modulators, at least in its
limit cycle behavior. For example, a PWPF modulator will behave approxi-

mately the same as the IPF modulator when e(t) is small, as is the case

when the system is in a limit cycle oscillation.

RESET eo TO ZERO

e it)
e(t) 0 I THRESHOLD FIRE SIGNAL
INTEGRATOR A

Fig. 9. SCHEMATIC DIAGRAM OF IPF MODULATOR.

C. Integrator Threshold Setting

It is apparent from Fig. 8 that the threshold value A must be

2
K_Kua 2
I -Kua
= = = .4
A % g for KI 1 (2.4)

11



since this is the integral of e(t) over the time interval between
pulses. The modulator must also provide the algebraic sign of the re-
quired pulse of torque. It is apparent from a comparison of Figs. 4 and

8 that the sign of the impulse must be opposite to that of eo(t;). o)

k
denotes the sigh of the pulse which occurs at t = tk+1; therefore
k+1
6k = -sgn e(t) dt (2.5)
tk

and m(t) has the form

m(t) = L%%ku(t - tk+1) + 6k+1 u(t - tk+2) + ...] : (2.6)
where pu is the strength of each pulse and u(t—tj) is the unit im-
pulse occurring at t = tj'

A is a combination of the four parameters K, u, a, and J. If
it were to be assumed that the integrator threshold is exactly A, then
there could be no allowance in the analysis for a threshold setting which
is variable independently from the other system parameters. Because it
is important to know what the effect of the threshold setting is on the
limit cycle behavior of the system, the threshold setting will be taken
to be (1 + ¥)A, where y may be considered to be the fractional error
in the threshold setting. For » = 0, the threshold value will be that
determined here to be necessary for the existence of a two-pulse limit
cycle.

The analysis in this chapter has established that the IPF modulator
with threshold setting A and with the appropriate logic elements for
determining 6k will sustain the system in a steady-state two-pulse limit

cycle oscillation having an amplitude 6 provided that the system is

a’
started with appropriate initial conditions. One set of these conditions
is eo(O) = 0, 6(0) = 0, 6(0) = uw/2J. However, up to this point the anal-
ysis is valid only for this steady-state oscillating condition, and be-
cause the system is nonlinear (by virtue of both the dead-~zone element

and the threshold-reset mechanism in the modulator). A complete dynamic

12



analysis must be made to determine the transient dynamic properties of

this system. The following questions must be answered:

¢

2)

(3

1)

If the steady-state two-pulse limit cycle oscillation is
perturbed slightly by a small disturbance torque, for ex-
ample, will the system continue in a two~pulse limit cycle
oscillation or will it become unstable in some sense?

If the sygtem is started at initial conditions for €5

6, and © not corresponding to the values on a two-pulse
limit cycle trajectory, will the system settle eventually
to a two-pulse limit cycle?

Under what conditions, if any, will four-pulse, six-pulse,
or higher order 1limit cycles occur?

How are the answers to the above three questions dependent
upon the six system parameters pu, J, a, K, Qd, and »?

To answer these questions, a mathematical model for the complete

system,

using arbitrary initial conditions, is derived in Chapter III.

In Chapters IV and V these four questions are resolved through analyti-

cal studies of the mathematical model and by experimental means through

the use of a digital simulator of the system.
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Chapter III

MATHEMATICAL DESCRIPTION OF ATTITUDE CONTROL SYSTEM

A, The Basic Difference Equations

It is assumed that the torque pulses delivered by the gas valve are
impulses occurring at instants denoted by tk’ and therefore é(t)
changes abruptly by Sk_l(p/J) at those instants. 6(t) is constgnt
between firing instants because of the lack of any external torque. 6(t)
is continuous for all t. PFigure 10 shows the typical behavior of é(t)
and 6(t) for 6 > Gd, outside the 1limit cycle region. The interval
(tk+1—tk) is here called ék’ and because of the discontinuity in 6(t)
it is necessary to define 6 for t = tk to avoid confusion in the anal-

ysis. Following an established practice (161, this is defined as

+
Q(tk) = G(tk)

o(t) for t el (3.1)

A simplification of notation, introduced at this point and. carried

throughout the sequel, is convenient. Let
=0
e(tk) k
and . (3.2)
O(tk) = Gk
Ok and Ok are sometimes expressed also as 6(k) and é(k). It is

clear from Fig. 10 that the functions 6(t) and é(t) are defined by
their values at the firing instants, together with the intervals Ak'
The relationship which defines the successive values of 6 and é at

the firing instants is the following set of difference equations. These

equations

Oee1 = % * %Pk

ék + 5K(E) (3.3)

“k+1
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c I ! 1 I (¢ -t
tk+ tkt2  tk+3

e

F i ] | l 45}L______*_'

tk tk+i k42 tkt3

Fig. 10. THE NATURE OF 6(t)- AND 6(t).

constitute the basic mathematical model for all of the following analysis.
It is shown in Section III.B that both Ak and Sk’ guantities which
depend upon the modulator design [and threshold setting A(1l + )], can

k
the dynamic properties of the modulator are suppressed from the analysis

be determined from Qk and ék' When Ak and o are so represented,

so that the basic equations (3.3) turn out to be second order dif-
ference equations, even though the system itself is of the third order.
the three state variables being 0, é, and e, " Because of the logical

operations inside the modulator, eo is a '"degenerate!" state variable,

16



and dynamic analysis of the system may be accomplished in a two-dimen-
sional state space, the (Q,é) plane [2,15]. Figure 11 shows a portion
of a typical state trajectory on the (G,é) plane. The dots on the
trajectory represent the locations of 6 and é at t = t;, so the
coordinates of the dot are Qk, ék' Note that the continuity of 6(t)
and the discreteness of 6(t) are as apparent here as they are in Fig.
10. The uniform discrete changes in 6 are called Aé in Fig. 11.

It may also be deduced, from a comparison of Figs. 10 and 11, that
Fig. 10, which shows 6 and 6 both increasing with time, depicts be-

havior in the second quadrant of the (8,8) plane.

De

1 j——: t=tehy
5l 1—4}/

| }THE (k+1)TH FIRING INSTANT, t=ty 4

b

B [ / '
1
— f= ‘———

. it

Ox+2 k+l

: _ —

L] o .

k+3 lr’"A9=L‘;’ {

®

9k+4”'——L L_j‘
1 1 | | ..
B Bk +1 Bk+2 Gtz Ok+a

Fig. 11. A TYPICAL STATE TRAJECTORY ON THE STATE PLANE
(OR PHASE PLANE).

B. State Transition Equations

Equations (3.3) are essentially state transition equations in that

they express the state (6,8) at tk+1 as functions of the state at

tk. However, the equations of (3.3) contain the quantities Ak and Sk,
so they are not in a convenient form for calculations or for analysis.

Here (3.3) is reduced to such a convenient form. The first step in this

17



development is to define certain characteristic regions in the (Q;é)
plane; within each region the system operates in a distinct manner.

The dead-zone element defines three regions, each of which is iden-
tified by the sign of e(t). Equations (2.2), which defined the dead-
zone characteristics, show that e(t) 1is positive, zero, or negative
depending upon eN(t). eN(t) is a linear combination of the two state
variables 6(t) and 6(t) [Eq. (1.2)]. The dead zone in the phase
plane may be established by combining Eqs. (1.2) and (2.2); this combina-

tion yields

(1) e(t) = KI[B + ab - Qd] for 6 + aé > Qd
(I1) e(t) = KI[6 + ab + Gd] for & + aé < —Gd (3.4)
(111) e(t) = O for -6, < (0+ad) < 6

For (Q,é) satisfying (I), e(t) is positive; for (Q,é) satisfying
(11), e(t) 1is negative; and for 'CH)) satisfying (III), e(t) is
zero. Therefore, the state plane can be separated into three regions,
each corresponding to one of the situations described by I, II, or III.
Figure 12 shows the three regions drawn for a > 0. (It is shown later,
that a must be greater than zero to have a stable system. This condi-
tion corresponds roughly to "positive damping” in a linear system.)

The boundary lines of the dead zone are called B1 and B2. A

mathematical representation of these, using standard set theoretical

notation and considering the tuple (6,6) as a vector, is

s}
I

Gd - aé}

—Gd - a@}

{(e,é): 6
(3.5)

o
1]

{(e,é): 0

18
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e(t}>o

-5
a

Bl: 9=9d-09.

By 0:-84-af—— ]

Fig. 12. THREE BASIC REGIONS OF THE STATE PLANE.

The three regions, I, I1, and III, may also be represented as

1={(e,é): 6>9d—aé}
11 = {(e,é): o< -6, - aé} (3.6)
111 = {(e,e): -6, -ab<o<6 -ae}

It is now possible to calculate Ak and Sk for trajectories that
begin inside the dead zone, in Region III, at t = t;. In this case,
the dynamic behavior of the system is depicted in Fig. 13 which shows
the state trajectory during the interval, Ak’ the modulator input sig-

nal, e(t), and the output of the integrator, eo(t). The controlled
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t*

t t* Tk

THRESHOLD A(1+7) | eo(t)=[elt)dt
REACHED AT ty 4 ;

|

|

PULSE FIRED, eqft)

RESET TO ZERO
L i
- t

*
fk t

Fig. 13. e(t) AND eo(t) WITH THE CORRESPONDING TRAJEC-
TORY ON THE STATE PLANE.
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body moves at a constant velocity ék during the entire interval

(tk+1—tk), having acquired that velocity as a result of the pulse fired
at t = tk, or possibly as a result of some other agent which presents
us with the dynamic state (ek,ék) at time t, . For t <t <t the

system is coasting in the dead zone so that e(t) = 0 during this initial
interval. At t = t*, the system leaves the dead zone, still coasting,
but with e(t) increasing linearly according to the following expression

e(1) = K6, T for 0 < T< (t - t% 3.7)

k - - k+1
where T = (t-t*). The integrator output is therefore
2
K6 1T
2

eO(T) = (3.8)

The threshold A(1 + y) is reached when the following relationship is

satisfied
. 2
K6 T 2
k f Kua
T = = = — .9
eo( f) > @aa + 2 1+ 7) (3.9)
where T, is the instant of firing (t = tk+1)' From (3.8), Tf is
found to be
Tf (3.10)

From this, it is clear that the positive root of (3.9) corresponds to
the physical situation. Now the sign of eo(t) is positive at t = t;+1
so 6k = -1 and one of the state transition equations (3.3) can now

be determined

' . (6,,6,) € III
) =9 -4& (3.11)
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The other equation is obtained by noting that the firing instant

tk+l is determined solely by that portion of the trajectory lying within

I. As long as it puts the state (ek,ek) anywhere in the dead zone, the

e coordinate has no effect on 0O The € coordinate at t = t*

k k+1’
depends upon Gk, of course, and this coordinate is found from the equa-
tion for Bl.

6(tY) = 6, =6 - ab (3.12)

Since the time of travel from 6 to © is T_, our second
* k+1 T

state transition equation is

9k+1 = 9_)(_ + Tfek
(ek,ek) € I1I

=6 (3.13)

Equations (3.13) and (3.11), taken together, constitute the state transi~
tion equations for (Gk,ék) € 11T and for ék > 0.

If Gk = 0, then any state in the dead zone will remain there (on
the 6 axis) indefinitely. If (ek,ék) is in I1I but in the lower half
plane (Gk < 0), then, because of the symmetry of the system, the deriva-
tion of the state transition equations is similar to that given here
with -ek and —ék playing the roles of 9k and ék in the above anal-

ysis. The results of that derivation are

k+1 k

. e ,8
, %@+ 6 R

- - - a8 - 3.14
i1 = "% ~ 2% 23 i (3.14)

6 <O
k

Next, the state transition equations for (ek,ék) in Regions I and

IT must be derived. Again, because of the symmetry of the system, it is
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necessary to consider only one of these regions, say I, in detail; the

behavior for Region II will be similar. One of two distinctly different
modes of state transition occur, depending upon the location of (Gk,ék)

in I. These are illustrated in Fig. 14 as Modes A and B.

| §

I MODE A

Fig. 14. MODES A AND B--STATE TRANSITIONS.

In Mode A, e(t) is greater than zero during the entire interval

tk+1 - tk = Ak’ as is shown in Fig. 15. During this interval,

e(1) = K[Gk + QkT + aek - Qd] (3.15)
where T= t - tk. eo(T) for t ¢ Ak is
T . )
eO(T) =K *é [ek + th + a9k - Gd] dt (3.16)
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Fig. 15. e(t) AND eo(t) IN MODE A BEHAVIOR.

Ak is defined by t the instant at which eO(T) reaches the

k+1’
threshold; therefore it is computed by setting eo(T) = A(1 + ) for

T = Ak' From (3.16), this gives

VAN

k
A1 + 7) = K fo lo, + 6, t + a6 - 6.1 dt (3.17)

The desired expression for Ak is obtained by evaluating the integral

and using (2.4)

2
EE_SlTi_Zl -0 (3.18)

By using the quadratic formula to find the least positive value for Ak’

we obtain
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2 5 -
d %@ + ) O + 26 -6

B _ . .
2J Gk e

d

(3.19)
k

And by substituting this expression into the basic difference equation

(3.3), the state transition equation

6 =6, -ab + [(6, +ab - 0 )2 + Eéfil—i—Zl 0 (3.20)
k+1 = d k k k d 2J k )
is obtained. e (t. _) is positive in this case, therefore & = -1.
o k+l k

The second state transition equation is
. . u
0 =6 - = .
T (3.21)

Equations (3.20) and (3.21) are the state transition equations that hold
whenever (Qk,ék) € I and the system operates in Mode A.

Now, if (Gk,ék) € I, but at a point such that the integrator out-
put does not reach the threshold value before the trajectory enters the
dead-zone, the system is in Mode B and the behavior is that described by

Figs. 14 and 16. Here the trajectory reaches the edge of the dead zone

at t = t¥*, e(t® 1is zero, and eo(t) reaches a level less than that
required to fire the valve. eo(t) remains at eo(t*) as the trajectory
coasts across the dead-zone (because e = 0 during this interval), reach-

ing the edge at t = t**. For t > t**, the trajectory is in Region II,

so e(t) is negétive, decreasing at the same rate as in the interval

(t*;tk). Since e(t) 1is negative, eo(t) begins to decrease from its
positive value of eo(t*), and it reaches zero at t =t . At t =t
e(t) has reached the same magnitude that it had at t = tk, but it is
negative. Apparently the intervals (t*;tk) and (to—t**) are equal.
During the final interval (tk+1—to), eo(t) decreases at a rate more

rapid than before (in this Ak interval) because e(t) has a higher

magnitude than before. eo(t) reaches the negative threshold at tk+1’

as shown. Thus Ak is the sum of four intervals

¥ »*
Ag= (¥ -t ) + =t o+ k) -t (e, - t))  (3.22)
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Fig. 16. e(t) AND eo(t) IN MODE B BEHAVIOR.

Two of these are equal; the interval corresponding to the dead-zone

travel is

@** -t = — (3.23)

The negative sign is required in the denominator because Gk is nega-

tive in the situation depicted here. Ak may therefore be written as

26
_ * _ __4da -
o = 2t t) -+ (t, 5~ t) (3.24)

6
k
The interval (t*—tk) is simply the time required for the system

to move from 6 = Gk to 6 = 6(t* at the constant rate ék' e(t™
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may be expressed inh terms of 6 because (B ,é ) ¢B From (3.5)
k * K

L
6 = 6. - ad ' (3.25)

so (t*;tk) is given by

('t* —_ -tk) - = (3.26)

The interval (tk+1—to)—-ca11 it Af——is now calculated in much the

same way that Ak was found in (3.16) to (3.19). During this interval,

e(t) 1is given by
e(1) = K[Gd - ek - aek + QkT] (3.27)

where 1T = (t—to). Integrating this from 0 to A? to give eo(t— )

k+1
and setting that equal to =-A(1 + y), yields an expression for Af
Af . 6k 2
T = - 0 - — = - .
j(; e(1) d K[(Gd k aek)A:,E + 3 Af] A + ) (3.28)
206, - 6 - ab ) 2
Ai . d__ & k A, + B Q@+ N _ g (3.29)
2
Qk J Qk

Using the quadratic formula with ék < 0 and selecting the least posi-~

tive root of (3.29), yields

2
. 2 pwa (1 + y) 2
-(6, -8 - a8 ) - VAG -6 -ab ) - —=— 179
k d
A} _ d k : k k 2J k (3.30)
ek

Ak is obtained by combining (3.24), (3.26), and (3.30).

2
_Lij-6, -6 -ab - B - aby2 P
Ak = p ed Gk aek Vﬁed Gk aek) % Qk

k (3.31)
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When this expression is substituted into the basic difference equation

(3.3) the resultant state transition equation is

' > s .2 pa (1 + »)
g = -~ - - - - B o TR .
1 6 ad G 2] ag ) g (3.32)
In Mode B, e (t 1) is negative, so ©® = +1, and the second

state transition equation is
6 =8 +‘3l (3.33)

It is now necessary to separate Region I into two subregions--call
them R1 and R4——such that (ek,ek) € R1 leads to Mode A behavior,
while (ek,ék) € R, leads to Mode B behavior. We note first that for

ék >0, a trajectiry starting in I moves toward the right, away from
the dead zone. Therefore, all points in that portion of the upper half
of the state plane belonging to Region I also belong to Rl; R4 must be
in the lower half of the state plane. Further, R4 must be adjacent to
Region I1I1, inasmuch as those (Gk,ék) exhibiting Mode B behavior must
be relatively close to the dead zone.

To find the boundary between R1 and R4, consider a point (Qk,ék)
located so that eo(t*) is just equal to the integrator threshold (see
Fig. 16). From the analysis described by (3.7) to (3.14), it is clear
that the '"horizontal!" distance from this point to the edge of the dead
zone is ,J[—pa2(1-+7)/(2J)] ék' 1f (Qk,ék) is taken slightly to the

right of this point, Mode A will result. If it is taken slightly to the

left, Mode B will prevail. Therefore, the boundary separating R1 and

R4——ca11 it B4——is defined as follows, and it is depicted in Fig. 17.

— '
B, = {(6,6) : 6 <0 and 6 =06, - ab + /—‘ﬁ—(é—j*—ﬂ (3.34)

The slope of curve B4 is zero at the point where it meets the ©O

axis, and the same is true for BS' In some of the figures in later
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Fig. 17. SIX REGIONS OF THE STATE PLANE.

parts of this report, this fact may not be apparent because of the scale
used.

Because of the symmetry of the system, Region II is also separated
into two subregions--called R2 and R3——whose points are starting points
for Mode A and Mode B behavior, respectively. These subregions are also
shown in Fig. 17. Note also that Region III, the dead zone, is also sub-
divided into subregions R5 (for ék > 0) and RG (for ék < 0).

Ak may be calculated for (Gk,ék) € R2 in exactly the same manner

as it was for (Gk,ék) € Rl' Mode A behavior prevails, and the state

transition equations which result are

— :
_ . ) g Ha @+ 6
Ors1= 7% — 29 - [(G + ad + 6,) - 23 (3.35)
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6) € R3 are derived

Similarly, the state transition equations for (6k, "

from Mode B behavior

. - é B
k+1 k J
2 .
. . 5 Ha (1 + 7)9k
= - 9 1 —_—— .
6k+1 Gd a . + (Gk + aek + Qd) + 57 (3.36)
The boundary separating R2 and R3 is called B3, and it is defined

in the same manner as was B4.

: : : Haz(l + 7)é )
B3 = (6,8) : 6 >0 and 0O = —Gd_- af - —————53———— ‘(3.37)

This section's objective has now been reached. The state transition
equations have been found to consist of six different sets of difference
equations, each set corresponding to the state (Qk,ék) which exists
at t = t+. Table 1 identifies these six different sets of state transi-

k
tion equations.

Table 1

IDENTIFICATION OF STATE TRANSITION EQUATIONS

6
For Fek' k) State Transition Equations
in Given by Equations
Region
R (3.20) and
1 (3.21)
3.35
R, ( )
3.3
Rg (3.36)
R (3.32) and
4 (3.33)
R (3.11) and
5 (3.13)
3.14
R ( ) ]
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We complete this section with two remarks concerning the six sets

of equations. In the degnerate case where ék = 0 and —ed < Gk < Gd’

the system is at rest in the dead zone and will remain there indefinitely.
Ak will be infinite, and thus the state transition equations correspond-

ing to R5 and R6 are not valid for ék = 0.

The symmetry of the state plane suggests that the state transition

equations corresponding to R1 should bear some form of similarity to

those for Rz. R3 and R4 also should be paired in a like fashion, as

should R5 and RG. Note that if the state plane is inverted, it resem-

bles itself; Rl is in the position formerly occupied by Rz, and R3
and R4 have also changed positions, as have R5 and R6. This suggests

that, if 6 1is replaced by -6 and 2 by —é in the state transition
equations for Rl, the result should be the equations for Rz. The same
replacement in the equations for R and R should yield the equations

3 5
for R4 and R6. This is indeed the case with the equations identified
by Table 1.

In the following section, the state transition equations presented
here are normalized for the sake of simplicity and convenience in compu-
tation. Each of the boundaries Bl' B2, B3, and B4 is identified with
one of the six regions, and all of the significant facts and equations

developed so far are summarized in compact form.

C. The Normalized State Transition Equations

The state transition equations identified in Table 1 can be reduced

to simpler forms that are convenient for analysis, if the state variables

6 and 6 are normalized. For this, © 1is normalized with respect to
e and 6 with respect to p/J. x is the normalized state variable

d L d
replacing 6, and y is the state variable replacing ©.

g =2 (3.38)

)
Qd K

If these substitutions are made in the state transition equations derived

in Section III.B, the result is the set of normalized state transition
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equations shown in Table 2. Here £ is a normalized version of the lead

ratio
ap (3.39)
t=Je
d
Table 2
STATE TRANSITION EQUATIONS
= -1
yk+1 yk
F, :
1 N/ 2 42a +
7)
x = -1 A F X -
il (xk+2yk )T o+ B yk+1 Zyk
= 1
Yot = Yk Tt
F_:
2 J 2 Pa
X = - 242 a+yp -1 -
kol (xk + Eyk + 1) > Yy lyk
= -1
Yk+1 T Yx
F.
3’ 2
_ 2 5 (1 + )
el VAXk Ay 1)+ 2 e 1o by
Veer = Y t L
F :
4 \/ 2
2 £ (1 + ¥
X - - - A S 24 - -
K+l Gey + by, = D) 2 L= Ay,
Vr1 = Y T 1
F
5 2
L @A+ 7)
X = —_— 7 -
K+l 2 Ve ¥ 17 by
Yerr = T T L
F
6 2
27 + )
x - - -1 -
kel V/ 2 Yk £y
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ey R illustrated in Fig. 17, the

To define the six regions R 6

. 1’
state vector =z 1is introduced

z = (x,y) (3.40)

The six regions of the (X,y) plane are described compactly by the ex-

pressions shown in Table 3, and the boundaries separating the six regions

Table 3

DEFINITION OF THE SIX REGIONS OF THE STATE PLANE

X >1 - gy for y 2 0
R = ZzZ = (ny):

! X > a -+ »
1- 2y +anN~——5y for y<o
1
{ x<—1—zy-za/————(;7)y for y >0

z = (x,y):
¥ < -1 - gy for y <O

y >0
R, =¢z = (x,y):
3 (L + ¥)
-1 - 2y - £ ———5—1— y<x < -1 -2y

z = (x,y):

1

-
|
(

-1 - gy <x<1-4y

y<o0 I
Zz = (x,y)
—1—[,y§x<1-£y‘
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are defined in Table 4. Here that portion of the x axis lying in the

dead zone is called B5. For definiteness, each point on the boundaries
is taken to be a member of one of the six regions. I1f Tables 3 and 4
are compared, it is clear that B3 € R3, and B4 € R4. That portion
of B1 which is above the x axis is in R5 and that portion below is
in R4. The portion of B2 which is above the x axis is in R3, and
the portion below is in R6. The left end point of B5 is also in Bz,
and the right end point is in Bl. Thus it can be said that

{z = (x,y)} = THE STATE PLANE = iiﬁ R, U By (3.41)

Table 4

DEFINITION OF THE BOUNDARIES OF THE SIX REGIONS OF
THE STATE PLANE

1 - Ey}

z = (x,y) : X
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With the definitions made above, the dynamic characteristics of the
attitude control system under study can be described by the compact state

transition relationship

_ 1 3.42)
Zy = Tz (
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where z = (xk,yk) = [x(tk), y(t;)]{ and the mapping F is given by

F1 if zk € R1
'Fz if zk € R2
F =« . (3.43)
F if
kG i zk € R6

Fl’ F2’ e, F6 are the state transition equations listed in Table 2.
In the degenerate case zk € B5,

Thus (3.42) is the basic mathematical model for the analysis given in

the system remains at rest indefinitely.

Chapters IV and V where the stability of the two-pulse limit cycle oscil-
lation is investigated, and the existence of higher order limit cycles
is also determined.

The studies in Chapters IV and V consist of the analysis of the
structure of the mapping (3.42) and of supplementary experimental results
obtained from a digital simulation of that mapping. The digital simula-

tion is described briefly in the following section.

D. Digital Simulation of Attitude Control System

The basic mathematical model of the attitude control system is the
mapping (3.42) which is the set of six pairs of difference equations
given in Table 2, together with the definitions of the regions Rl’ e,
R6 given in Table 3. These relationships are very naturally suited as
algorithms for a digital computer program for computing successive values
of Zk’ starting from an initial condition zo = (xo,yo). Such a program
has proven to be extremely ﬁseful as an experimental tool in discovering
the intricate structure of the mapping (3.42) and, consequently, the limit
cycle behavior of the system.

The way in which the program works is illustrated in the flow chart
of Fig. 18. The input data are the values of y and [/ desired and the
initial conditions. The program first determines in which region z, =

(xo,yo) lies and then computes z, = Fjo(zo)' Fjo is the algorithm
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Y I Xo Yo

INPUT

Zg

\

PRINT z;—=—— FORM z; - Zj4)°2§ -

Y

IS z;eR,;? YES=>2i+|=Fﬂzn

NO

IS z;eRp? YES— zj41=Faiz;)

&No

®

®

[ ]

¢No

IS zj€Rg FEomtziy)=Flz;)

NO

IS z:€B YES PRINT THAT SYSTEM
Zi€bp ™ IS AT REST. STOP.

Fig. 18. TFLOW CHART FOR BASIC COMPUTER ALGORITHM.

appropriate to the region Rj containing zo. Then the region contain-

2 2
the F algorithm appropriate to the region containing =z

ing z1 is determined, and =z is computed as =z, = F'l(zl)’ again
J

using Fjl’ 1
This process is continued for a preset number of iterations, and the
successive values of zk are printed out. A listing of the program
statements and a sheet of typical readout data are contained in the
Appendix.

A plot of =z(t) may be constructed from this data by connecting

the points (Xk,yk) to the points (x yk) by straight lines. The

k+1’
result will be the "staircase" type of plot shown in Fig. 11. The height

of each "step" in the y direction is 1 because of the normalization of
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the © coordinate (3.38), and the total width of the dead zone, in the
x direction, is 2, also because of the normalization of the 6 coordi-

nate.

A two-pulse limit cycle occurs whenever zk 9 = zk for all k
4

larger than some integer.
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Chapter IV

TWO-PULSE LIMIT CYCLE OSCILLATIONS

In Chapter 11, the dynamic properties of the modulator which are
necessary to sustain a symmetrical two-pulse limit cycle oscillation
were determined. It was demonstrated that the common IPF modulator has
these requisite characteristics if the threshold value A@+y) is A,
i.e., if 7y = 0. In this chapter the transient characteristics of the
system are studied with the objective of determining the conditions under
which unsymmetrical two-pulse limit cycles exist, the stability of two-
pulse limit cycles, and the convergence of the state trajectory to the
two~pulse limit cycle from an arbitrary initial point in the state plane.
The state transition equation (3.42), together with the detailed descrip-
tions of the F function contained in (3.43), Tables 2, 3, and 4, and
Fig. 17, constitute the basic mathematical model for the transient studies

in this chapter.

A. Geometrical Approach

Limit cycle behavior of feedback systems having pulse-modulated con-
trollers has been studied previously using modified Lyapunov theorems
and point transformation techniques [2,7,12] and frequency domain methods
[6,17,18]. An attempt to apply a Lyapunov-type approach to the system
under study was also started but abandoned when an interesting geometri-
cal structure of the state transition function was discovered. Subsequent
pursuit of these geometrical properties revealed all of the dynamic char-
acteristics of the system pertinent to its limit cycle oscillation behav-
ior, as well as explicit conditions on the system parameters which must
hold for the existence of stable two-pulse limit cycle oscillations. Be-
yond this, the conditions under which higher order limit cycles can oc-
cur were also revealed by this geometrical approach. The two-pulse limit
cycle is discussed in this chapter, and the higher order limit cycles in
Chapter V.

Two geqmetrical properties of the state transition equation (or map)

zk+1 = F(zk) 4.1)
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form the basis for the studies described here. The first of these is
that a state Z in a given region of the state plane will lead to a

Zp 1 [through (4.1)] located only in certain regions. For example, if
zk € Rl’ then zk+1 4’ RS’

in R3 or Rz. Similarly, zk € R3 implies zk+1 will be in Rl, R4,
R5, or R6, but not in R2. The second geometrical property of signifi-
cance here is that all points lying in the dead zone at a given value of

will be in Rl’ R or R but it cannot be

6’

y will map [through (4.1)] into a single point. The whole dead-zone

area is mapped, therefore, onto a curve in the state plane.

B. Map of the Dead Zone

Consider a point 2z, € R5, the upper half of the dead zone, as

shown in Fig. 19. Then the state =z(t) = [x(t), y(t)] will progress
from = at time tk horizontally (at constant velocity yk) until

time t at which instant it will have arrived on the dashed curve

k+1’
labelled Bé. From the analysis in Chapter III, it is clear that points

on B! are the same horizontal distance from Bl’ the right-hand edge

of the dead zone, as are points on B3 from B2’ the left-hand edge

Zy \

Fig. 19. STATE TRAJECTORY FOR

Zy IN THE DEAD ZONE.
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of the dead zone. Therefore, Bé may be defined as
1
Bé =d{z = (x,y5) : x =1 - gy + z,/i——%—le , y>0 (4.2)

At time the gas valve is fired so that z(t) jumps vertically

tk+1’

downward by 1 unit, placing zk+1 as shown. We note that any zk,

located on the horizontal line between the edges of the dead zone, will

map into the same zk+1, so that the single point zk+1 is the domain
of the map F where the range of F 1is taken to be the horizontal line
segment lying in the dead zone. The coordinates of zk+1 are easily
established from the formula describing Bé. From this formula, (4.2)
becomes
- A+ 7

X1 = 1 zyk + 4 — Yy 4.3)

and the y coordinate of Z il is obviously (from F5 in Table 2)
Va1 = Y ~ 1 4.4)

If all the points in R5 are mapped into their corresponding zk+1 points,

the mapping will form a curve [the equation of which may be determined by
combining Egs. (4.3) and (4.4)]1 which may be taken to represent the map-
ping of the general point 2z € R5 into zk+1. This curve is called
F(Rs) and is defined as

F(R5)=Z=(-X,y)=X=1—£—£y+£\/-g-¥)-(y+l), y> -1

(4.5)

The anatomy of this curve is quite important in what follows, so it is
displayed in Fig. 20 where it is drawn to an exaggerated scale and is

shown for ¥ > 1. The coordinates of particular points are indicated on
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Fig. 20. STATE TRANSITION MAP OF THE DEAD ZONE.
Coordinates of the points A, B, C, and D are
also shown.

the figure. The slope of F(Rs) is calculated from (4.5) to be

2Ny + 1 (4.6)

YA

(F52) - apr

At the point (1,-1) the slope of F(RS) is zero. Point A is the

point at which F(R5) intersects Bl’ the edge of the dead zone. Point
B is the rightmost point of F(RS) and the slope dy/dx is infinite
there. Notice that the x coordinate of point B is greater than 1 for
all » > -1. B lies below the " x axis for » < 7 and above it for

¥y > 7. Point C is the point at which F(R5) intersects B4, the boundary

separating R1 from R4. Note that if y =1, point C lies at (1,0).
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Point D is the intersection of F(R5) with the x axis. The slope of
F(RS) at point D is

Note that for 7y = 7 point B coincides with point D, and the slope is
infinite at that point. The slope of F(RS) approaches -1/4, the

slope of B as y o .

s
Figure121 shows F(RS)’ drawn approximately to scale for 4 = 1/2,
and for three different values for y ! y =0, y =1, and 7y = 7.
It is clear from the symmetry
of the phase plane that the mapping y

of R the lower portion of the

’
dead :one, is similar to the map-
ping of RS' The map F(R6) is just
the image, through the origin, of
F(RS)' F(R6) is not shown in Figs.
20 and 21, but it will be used and

shown in later figures.

C. Two-Pulse Limit Cycles

>

A two-pulse limit cycle, if it
exists, must lie in the phase plane
between the limits y =1 and y = -1,

because the amplitude of the limit

cycle in the y direction can be B
at most 1. Therefore, we begin our Fig. 21. STATE TRANSITION MAP OF
determination of the stability of THE DEAD ZONE F(R5) FOR

£ = 1/2 AND THREE DIFFERENT

two pulse limit cycles by observing VALUES OF &

the transient behavior of the system
for starting states z, in the dead zone and in the strip lying between
y =1 and y = -1. Because of the symmetfy of the system we need con-

sider only those starting points in the upper half of this strip.
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We trace the trajectory of =z(t), using the mapping of the dead
zone derived in the previous section. As the first example take y > 1,
then the two maps F(RS) and F(R6) appear (not to exact scale) as
in Fig, 22; zo is taken at a point slightly above the line y = 1/2,
as shown. The trajectory emanating from this initial state will be hori-
zontal until it strikes the curve Bé (see Fig. 19) at time t;, and
then it will drop abruptly by 1 unit in the y direction; this drop
corresponds to the sudden change in angular velocity of the satellite
brought about by the firing of the gas valve at t = tl. The state at

+

t = tl’ z, lies on the map F(R5) because z € R5; this is shown

L Y

Bz

Fig. 22. STATE TRANSITIONS FOR POINTS IN THE DEAD ZONE,
y > 1.
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in Fig. 22, The trajectory from =z is again horizontal, moving toward

1
the left. Now, since zy lies in the dead zone, in R6, the valve will
fire at t = t2 so as to put zz on the map F(RG)’ at the same vy
coordinate as that of the initial state zo, as shown. But Zg is also

in the dead zone so it will be mapped into the same point of F(R5) as
was zo, namely the point indicated by zl. That a two-pulse limit cycle
has been established is clear because each successive state is mapped in-
to the dead zone. This limit cyéle is slightly unsymmetrical because the
trajectory does not pass through the y = 1/2 and y = -1/2 lines.

Peak to peak amplitude of the x(t) oscillation will be slightly greater
than 2; this means the ©6(t) oscillation will have a peak-to-peak value
of slightly more than 29d or approximately that established as the
design goal in the design of the modulator (Chapter II).

Notice that the two-pulse 1limit cycle established here is 'meutrally
stable™ in that a small change in zo in the y direction will lead to
a two-pulse limit cycle adjacent to the original one. Because of the
finite, constant strength, torque impulse imparted to the system at each
firing instant, the trajectory cannot return to the original limit cycle
after a small perturbation in the y direction. It will return, however,
for a small perturbation in the x direction. Hence, 'neutral stability"
of the limit cycles, as illustrated here, is the best one can ask for in
this system.

Consider next a trajectory starting in the dead zone but at a dif-
ferent level of velocity, as indicated by z, in Fig. 22. We ask if
this trajectory will lead to a two-pulse limit cycle. Ya is slightly
less than 1, so that =z will map into a point on F(RS) just slightly

A
below the x axis, shown as zB. Now, ZB is in region Rl which
means that the horizontal trajectory leaving =z toward the left, will

B!
be very short and the switch instant tC will occur before the trajectory

strikes Bl' Therefore, zy will map into z, = F(zB) and, although it
appears that zC will be in the dead zone, its y coordinate will be
slightly less than y = -1, as shown. Therefore, z, = F(zc) will lie
below the x axis. zp = F(zD) will be back at the same y level as

the original state ZA' and if zE lies in the dead zone, the trajectory

emanating from it will coincide with the original portion of the trajectory,
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and the system will be in a limit cycle oscillation, but it will be a
four-pulse limit cycle oscillation. It is now clear that, because ZB
is in region Rl’ there cannot be a two-pulse limit cycle with a trajec-
tory passing through point zA. It is also clear that the same holds

true for points displaced slightly in the y direction from ZA'

In Chapter V, the higher order limit cycles, starting from points
such as zA, are considered in detail. Now, however, we turn to the
question of eliminating the conditions under which they can occur.

In Fig. 22, the trajectory starting at z, converged, in a single
step, to a two-pulse limit cycle, while that starting from zA did not.
The apparent difference between the two trajectories is that z; lies
on F(R5) in the dead zone, while zy lies on F(RS) in region Rl.
Figures 20 and 21 show that if vy <1, F(RS)’ in the strip bounded by
y =0 and y = -1, will lie completely within the dead zone, therefore,
any z in R5 (below y = 1) will map into a z1 in R6. And, if

z1 € R6, then z1 will map onto that portion of F(RG) which lies

completely within R5. Hence, for y <1, any zo in the dead zone
lying between y =1 and y = -1 will be the starting point for a tra-
jectory that quickly converges to a stable (neutrally so!) two-pulse
limit éycle. Figure 23 illustrates three such two-pulse limit cycles
shown for ¥ = 0.9, 2 = 1/2. The digital simulation described in Chapter
III and in the Appendix was employed to calculate some of these trajec-
tories. The results of two such calculations are given in Table 5. These
results verify the exact behavior to be expected from the geometrical
relationship shown in Fig. 23.

If z0 lieson y=1, y =0, or y=-1, the trajectory will
come to rest on B and will remain there indefinitely. This degenerate

5
case is not discussed further here,

D. Convergence of Trajectories From Arbitrary Initial States

It was shown in Section IV.C, that » <1 is a necessary and suffi-
cient condition for the convergence of the state trajectory to a stable
two-pulse limit cycle starting from any initial point in the dead zone
lying between the limits y =1 and y = -1. 1In this section, the fates

of these trajectories that start from initial points outside this small
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B2

Fig. 23. THREE TRAJECTORIES THAT START IN THE DEAD ZONE
AND IMMEDIATELY CONVERGE TO TWO-PULSE LIMIT CYCLES,
y < 1.

trapezoidal region are determined, and the conditions under which they
converge to a stable two-pulse limit cycle oscillation are revealed.

At the outset, it is clear that » < 1 is a necessary condition
for all trajectories to converge to two-pulse limit cycles. For if
y > 1, then any trajectory leading to a point such as zA in Fig. 22
cannot converge to a two-pulse 1limit cycle. It is also clear that £ > O
is also a necessary condition for such convergence. If ¢ = 0 (the dead-
zone boundaries parallel to the y éxis), a trajectory starting at any
integer value of y, or an integer plus 1/2 from inside the dead zone,
will immediately enter an "undamped'" multipulse limit cycle oscillation,.
A negative g corresponds to negative damping, and the oscillations
will diverge.

Assuming £ > 0 'and y <1, we now investigate the trajectories

for initial points at arbitrary locations in the state plane. Note
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Table 5

TRAJECTORIES CONVERGING TO TWO-PULSE
LIMIT CYCLES, ¥y = 0.9, g2 = 0.5

k xk yk

0 0.985 0.01
1 1.044 -0.99
2 -0.990 0.01
3 1.044 -0.99
4 -0.990 0.01
0 1.093 -0.40
1 -1.108 0.60
2 1.077 -0.40
3 -1.108 0.60
4 1.077 -0.40

first that if y <1 (see Fig. 21), there will be points on F(Rs) above
the x axis, as high as y = (1-»)/(1+y), which lie in R5 itself.
Therefore, any z in R5 lying below a y 1level of 1 + (1-y)/(1+y) =
2/(1+y) will map into the dead zone and hence will eventually enter a
two-pulse limit cycle oscillation like one of those shown in Fig. 23.
Hence, the region of the dead zone lying between the limits y = -2/(1+7y)
and 'y = 2/(1+y) may be considered to be a "capture zone!" (CZ) in that
any trajectory which eventually has a state zk in this 2zone will con-
verge to a two-pulse limit cycle. The CZ is illustrated in Fig. 24.
Because of the symmetry of the state plane, a trajectory starting
from a given point z, in R1 will be similar to the trajectory start-

ing from the point in R which is the image of zo through the origin.

2
The same is true of points in R4 corresponding to initial points in
R3 and also for corresponding points in Rs and R6. Therefore, only

initial points in Rl’ RS' and R5 need be considered,
Consider next those initial points lying in RS’ 5

the x axis. The fates of the trajectories emanating from all these

R and Rl above

points are subject to the following argument. Because the state vector

z(t) 1is never at rest in these regions, and because it always progresses
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Fig. 24. R; AND THE CAPTURE-ZONE CZ.

toward the right and downward, only one of two possible things can happen

to z(t). It may pass into CZ and be in CZ at a firing instant tk’

in which case z(t) will converge to a two-pulse limit cyecle. Or, z(t)
may cross the x axis to the right of the point (1,0), headed downward.

In the latter case, a firing instant tk must occur somewhere in the

strip of unit width just below the x axis (shaded area shown in Fig. 24

as R;). Therefore, all of the trajectories starting in R3, R5, and

R1 (above the x axis) that do not enter CZ will have state points

Z, € RI. Furthermore, any initial state lying in Rl below the strip
R; can be considered to be a point on some trajectory which emanated
from an initial state lying in R;. Therefore, we need only consider

trajectories starting from points in R; and, if these can all be shown
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to converge to two-pulse limit cycles, then the same is true for all
points in the state plane, except, of course, for the degenerate points
in B5.

Before proceeding with the convergence proof, it is of interest to
note the nature of the trajectories starting from initial points in R;.
Three of these, for initial states having large magnitudes, are shown in

Fig. 25, and three for small initial states are shown in Fig. 26. These

-
-+
-~

-301

-40-

-501

-60+

Fig. 25. TYPICAL TRAJECTORIES CONVERGING TO UNSYMMETRICAL TWO-
PULSE LIMIT CYCLE FROM REMOTE INITIAL POINTS, y =1 AND
£ = 0.5.
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Fig. 26. TYPICAL TRAJECTORIES CONVERGING TO SYMMETRICAL TWO-
PULSE LIMIT CYCLE.

trajectories were obtained from the digital simulation of the system
described in Chapter III and in the Appendix. These computer runs were
made for 4 = 0.5 and ¥y = 1. Other runs for g as small as 0.0l showed
convergence to CZ nearly as abrupt as that shown here. The two-pulse
limit cycle in Fig. 26 is symmetrical because the initial value of the

y coordinate is -1/2. The 1limit cycle shown in Fig. 25 is not symmetri-
cal because the initial value of the y coordinate is -0.1, which re-

quires all subsequent y coordinates to have values differing from -0.1
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by integer terms only. Hence the y coordinates of the limit cycle are
+0.9 and -0.1.

A proof that the trajectories will converge from any initial point
in R; can be based on an argument which depends on the "staircase"
nature of the trajectories which is so evident in Figs. 25 and 26. Figure
27 represents the staircase characteristic schematically (not to scale).

We can show that the point lying on the trajectory which emanates

b “2k+3”
from z0 € Rl, is closer to the y axis, by a positive amount & bounded
away from zero, than is z, itself. That portion of the trajectory sub-
sequent to z2k+3 will either lead into the CZ, or cross the positive

X axis and have a state point at the same y 1level as Z s but closer

to the y axis. Hence the trajectory will eventually converge to the

CZ.

Z2k+3

25443

Fig. 27. STAIRCASE NATURE OF THE STATE TRAJECTORY.
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If the total width of the (k+1) steps leading downward from z

to zk+1 were exactly equal to the total width of the (k+1) steps

leading upward from zk+2 to sz+3’ then a simple demonstration
would ffici t t i

that |xk+2| < Xl u be sufficient to prove tha Zoks3 18 closer

to the y axis than is zo. It is difficult to calculate the total
width of the (k+l1) steps in question. Furthermore, a comparison of
individual step widths shows that in some cases an ascending step can
actually be wider than its counterpart (at the same y level) in the
descending staircase. However, in our proof, it is not necessary that
each ascending stair be narrower than (or equal to) its descending counter-
part, nor is it necessary that the total widths of the staircases be equal.
The total width of the ascending stairs can, in fact, be the wider of the
two, as shown by the trajectories in Fig. 25.

Instead of comparing the descending staircase with the ascending
one, let us compare the width of a step on the descending path to a step
lying at the same y 1level but on the ascending path of a fictitious
trajectory whose terminal point has an x coordinate which is less
in magnitude, by a finite amount, than the x coordinate of the
starting point of the step on the descending path. This situation

is illustrated in Fig. 28. The magnitude of the x coordinate of the

y
| b
-(xp-8) Xg+1 Xp
e TATEL TR x
[ T T Zo
| I -l l |
I ]
L—-T zg=(xg,y) , [-——*
;)
o 1 L—‘_? —a—b 2p=(x4,y)
ZB+|-(-(‘A-8),y) |
l o L ——b
i |
| |
FICTITIOUS TRAJECTORY

Fig. 28. FICTITIOUS TRAJECTORIES FOR USE IN CONVERGENCE PROOF,
Yo < -1/2,
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terminal point of step =z is (xA—S), where 8 is a positive quantity,

B
independent of xA and y, and is to be suitably chosen. xA is the
X coordinate of the initial point of step zA. We will show that the
width of step zB is less than that of step zA. Then we can make use

of the fact that, for a given value of y, the width of a step on a
trajectory becomes smaller as the initial point is moved farther from
the dead zone. (This is simply a result of the faster charging time of
the integrator for larger input voltages.) To compare the widths of
steps Z5 and zB, we simply need to compare AA = (tA+1
AB = (tB+1-tB), because the two steps are at the same y (velocity)

—tA) and

level.
To calculate AA and AB in terms of the normalized coordinates,
we use the expressions for e(t), developed in Chapter III, along with

the relationships

2
g = H& A = K2
J6 47
d
6= 6x 6ty x-Z%y (4.7)
d J a

the voltage into the integrator is

A 1’
e,(t) = K(6 + a0 - 6) (4.8)
and, for zB € Rz, it is
eg(t) = K(6 + ab + 6,) (4.9)
Now, in each case é = (W/J) y. For z,, Wwe have
0(1) = 6, + 61 (4.10)
where Tl = t-tA and
GA = deA (4.11)
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For zB, we have
6(72) = QB + 612 (4.12)
where T2 = t—tB, and GB is the initial point of the step zB and
is related to GA by
GB = —(GA - 89) - QAB (4.13)

where 89 = aed.

Now, combining Egs. (4.10) to (4.13) with Eqs. (4.7) to (4.9) yields

2y
eA(Tl) = KQd[QA + gy - 1 + (?;)Tl]
eg(ty) = Ked[1 - (x, = ®) + gy - (ﬁai')%3 + (%)Tz] (4.14)

To calculate AA and AB we evaluate the following integrals at

the instants of firing

Aﬁ
j; eA(Tl) dTl =A@ + )
fAB
eB(Tz) de =-A(1 + ) (4.15)

0

These integrals yield the following quadratic formulas which must be

solved for their least positive roots.

FAAWR _ _agd + )

(—-—za)AA S R A R

LY\ A2 -5 - - _2eQ + )

(2,‘1)%3 +(x, -8 - gy - DAy 1 =0 (4.16)
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We note that y is negative, so the least positive roots of these ex-

pressions are

2
(xA + 4y - 1) - NKXA + Ly - 1)2 + £ Q-+ y
2
A =
“ ¥
a
\/ 2 2@+ )
AB ) (xA -8 - gy - 1) - (xA-S-zy-l) + =y
2y
- (&)

(4.17)

We form the difference A, - AB as

2 2
20y + © = N&xA-+2y-—1)2 + é—S%JtZl + VAXA-5-Ey-l)2 + ﬁ—iéi;Zl y

&)

(4.18)

Now, the conditions on 8 +to insure (4.18) being positive and thus

step z, being wider than step zy (Fig. 28) must be found. 1In the

condition under consideration, y is negative, so we consider only the
numerator of (4.18). We also note that for y = 0, (4.18) is invalid,
and that steps =z and z are equal in width, but that the width is

A B
zero. The numerator of (4.18) is rearranged as

V&;A -3 - gy - 1)2 + Bzy - ,/(xA + Ly - 1)2 + Bzy + (22y + 3)

(4.19)

2 2
where B = [£ (1+»)]/2 is used to simplify the expression.

We now pose the question of (4.18) being positive by forming an

inequality out of the three terms in (4,19)

V&;A -~ % - gy - 1)% & Bzy 2 QQXA + Ly - 12+ Bzy - (22y + )

(4.20)
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o
The symbol > means that if © is such that the left side of (4.20)
is greater than the right side, then (4.18) is positive. The left side
of (4.20) is positive, and the right side is also positive, provided the

following inequality is satisfied

2 2
V&XA + 8y - 1) + By > (28y + d) (4.21)
We accept (4.21) as a constraint on 8, so both sides of (4.20) may be
o
squared without losing the validity of the question indicated by the >
symbol. If both sides of (4.20) are squared and terms common to both

sides are eliminated, the question posed by (4.20) is reduced to

2 2| 2 2 2
-Zzy(xA—l)—zyS—[S(xA-l)+2[, y] S =28y +03) X, + Ly - 1) +By

A
(4.22)

1f the following condition is met, the right side of (4.22) will be posi-

tive
20y + 3 < 0 (4.23)
The left side will be positive if
2 2
—2£y(xA -1) -~ 2yd > S(XA-I) + 28y (4.24)
We accept both conditions (4,23) and (4.24), and we square both sides

of (4.22). Many common terms appear on each side of the ; sign. This

allows the question to be resolved to the simple form of

? 2 3 2 2
0>40y + 458y + d y (4.25)
Note that (4.25) can be written as

2? 2
035 yId + 24y] (4.286)
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which is clearly satisfied for y < 0 and for any &. Thus, if we can
find a positive & to satisfy the three conditions, (4.21), (4.23),
and (4.24), and not depend upon xA or y, the positivity of (4.18)
will be assured.

Consider the case © = 4. With this condition (4.21) becomes

2 2
MAXA + 2y - 1) + By> 22y + 1) (4.27)
If y is restricted to the range of

vy<-= (4.28)

then (4.21) is satisfied. Condition (4.23), with &% = £ and y < - 1/2,
is also satisfied, so (4.28) replaces both (4.21) and (4.23) as the con-
dition for the positivity of (4.18). Finally, condition (4.24), with

5 = 4, becomes
4G, ~ D@y + 1) > g7yy + 1) (4.29)

For y < -1/2, both sides of (4.29) may be divided by -£(2y + 1),

thus reducing the condition to

x, >1 - gy (4.30)

This is obviously satisfied because zA € Rl,

the right of the boundary of the dead zone. Therefore, with 5 = ¢

which puts zA well to

for y < -1/2, the width of step zg in Fig. 28 is less than the width

of the corresponding step zA. The proof of convergence is completed by

the following argument.
Consider a state point zé, lying to the right of zB but at
the same y level on a second fictitious trajectory, as shown in Fig.

28. Because zé is closer to the dead zone than is ZB’ the "step"
as shown. Now,

zé is wider than the step z and < |-x

B IXl'3+1| A|'

if zé happens to lie on the '"real' trajectory (the same trajectory
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containing zA), then the step Zé AL

(It can also be narrower.) Thus, if a step on the ascending staircase

can be wider than the step =z

is wider than its counterpart on the descending staircase, then that step

must lie to the right of the fictitious step Zp»
z;+1 is known to be closer to the y axis by an amount at least & = ¢

whose terminal point

than is the starting point of step zA. This is true for all the steps

having y 1levels less than -1/2, so the point 22k+3 (see Fig. 27)

lies closer to the y axis, by the positive amount &, than does =z ,

provided -1/2 > > -1. Hence, the trajectory will eventually converge
¥, Z

to a point zk e CZ.
For =z = lying in the strip 0>y > -1/2, convergence is guaranteed
under the following argument. [Refer to Fig. 29, which shows a trajec-

tory starting at z0 = (xA,yo).] The width of the initial step of this

22k+3 T| ¥
I
%
- X 3
~Xa =Xy —(lel) A .
=t Ik +2 %o
L
2

e

FICTITIOUS TRAJECTORY

|

I

|

|

1

|

1

|

1

l

g Z2k + ||———‘—Jz|

I
I
I
I
I

Fig. 29. FICTITIOUS TRAJECTORY FOR USE IN CONVERGENCE PROOF,
o> Yo > -1/2.
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of this trajectory is (x,-x,), as shown. By the argument developed

A1l

above, the terminal point of step must lie to the right of the

Zax+1
line x = —(xl—z). Figure 29 shows the fictitious trajectory which
bounds all possible real trajectories (starting from zo) on the left.

The width of the initial step may be determined by combining (4.7)

and (4.17)
2 22(1+7)
(xA - xl) = (xA + zyo -1) - (xA-+£yo-1) Ty, (4.31)
Similarly, the width of step ZokiD is determined for & = g, as
f 2 £2(1+7)
- = -— - - -— - - —1 ——l
oked " Forszl = gAY - D) (p=2-4y,~1) + 2 Yo
(4.32)
From Fig. 29, it is apparent that convergence is assured, if
- - 4.
Gy = 8+ [xy 5 = Fppial <% (4.33)

From (4.31) and (4.32), the left side of (4.33) may be calculated in

terms of x

A
M/ 2 22(1+7)
Gym0) + (g a = Xppipl = Xy = 20Q4y ) =[G =0-Ly 1)+ oy
J 2 Zz(l+z)
+ (xA+zyo—1) + > Y, (4.34)

From this expression, it is apparent that (4.33) will hold, provided that

the following inequality is valid

2 , 2
? 2 1
22(14')’0) + \/(XA_’g—Eyo_l)z 4 E__(;_+7_) yo = (XA+'eyo—1) 3 ‘e_.é__"_'l.)_ y

(4.35)

o
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In proving the validity of (4.35), the following notational changes

are convenient

1 -a \
Vo = 7 (1-201)“'“
x, -1
A 1+ 7 _ (4.36)
7Tk 5 =&

Both £ and (xA—l) are positive, and 7y is less than or equal to
unity, so the conditions on the newly defined parameters &, k, b, and
{ under which (4.35) is to be valid
1
0<O!S§- b_>_1

k > 0 r <1 (4.37)

Equation (4.35), expressed in the simplified notation of (4.36), is

2(1 - o) + \/(k crro?-ta 2 Ju- @ -t (4.38)

Each term in (4.38) is positive under the conditions (4.37), so both
5
sides of (4.38) may be squared without changing the validity of the >

symbol. Squaring both sides and rearranging the terms yields

?
1 + 41 - Q) \/(k -1+ 2 - ta > (1 - 20)(2k - 5) (4.39)

The left side of (4.39) is positive for all allowable combinations of
@, {, and k, and the right side is negative for k < 5/2. Therefore,
(4.39) (without the ?) is valid for k < 5/2, and we need be concerned
only about the case k > 5/2.

We note at this point that (4.39) must be proved valid for « = O.
Therefore, the term 4OF may be dropped and (4.39) reduced to
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10~ D JE -1+ 0% -ta d @ - 200K - 5) (4.40)

Now, (4.40) [without the ? for k > 5/2 and for &, b, and [, as
in (4.36)1 is a sufficient condition for the validity of (4.35) and hence
for the convergence of all trajectories to the CZ.

Using the notation introduced in (4.36), (4.40) may be written as

% 2 ?
4k - 1 + )7 - La > (2k - 5) (4.41)
Both sides of (4.41) are positive, so both sides may be squared
2 ? 2
16b (k -~ 1 + &)° - La]l> 4k - 20k + 25 (4.42)

Expanding the left side of (4.42) and rearranging the terms yields

4k [3b+ (b-1)1 + 5(4k -5) + 16b[1 +0° + 20k] > 16b(2k + 20 + ta]
(4.43)

Now the following inequalities hold because of the conditions (4.37)

16b > 32bQ
(4.44)
32bkx > 32bla
Therefore, (4.43) may be reduced to
2 Q? ?
4k“[3b + (b~1)] + 5(4k -5) + 16b + 16bCk > 32bk (4.45)
where the = sign must be included because of the > signs in (4.44).

However, the = sign holds in (4.44) only for & = 1/2. Therefore,

since b > 1, if the term 16bO? is dropped from the left side of (4.45),
the = sign may also be dropped. Equation (4.45) must also hold for

O = 0, so the term 16bCk can be dropped. This reduces (4.45) to
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4k2[3b + (b-1)] + 5(4k - 5) ; 32bk (4.46)

which must hold for b > 1 and k > 5/2.

It is convenient to rearrange (4.46) to
' 2 ?
bk[12k -32] + 4k (b-1) + 5(4k-5) > 0 (4.47)

where k > 5/2 and b > 1. We note that, for any value of b, the
minimum value of the left side of (4.47) occurs for k = 5/2. Thus, if
(4.47) holds for k = 5/2 and for all b > 1, the proof will be complete.
Substituting k = 5/2 into (4.47) yields

o
20b > O (4, 48)

which obviously holds for b > 1. Thus the original iﬁequality (4.33)
is proved to be valid, and the convergence of all trajectories starting

at points zO € R; to the CZ is assured.

E. Summary

In this chapter, it has been shown that the necessary and suffi-
cient conditions on the system parameters for the existence of stable
two-pulse limit cycles, and no other limit cycles, are £ > 0 and
7 < 1. These conditions imply that a, the lead ratio of the rate net-
work, must be positive and the setting of the integrator threshold must

be

2

(Integrator Threshold) < 5%%—

This means the threshold can be set as much as 100 percent higher than

its nominal value.
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Chapter V

HIGHER ORDER LIMIT CYCLES

It has been shown that, if 7y <1 and £ >0, =a trajectory start-
ing from any z, f B5 will converge to a stable two-pulse limit cycle.
Those results constitute the principal part of this dissertation in that
they solve three of the four questions set forth in Chapter I. In this
chapter the fourth question, the dynamic properties of the gystem for
7 > 1, 1is investigated. "The practical importance of the case 7 > 1
can be questioned inasmuch as it represents an error in the integrator
threshold setting of more than 100 percent from the nominal value which
was chosen on the basis of the desired amplitude of the two-pulse limit
cycle. Nevertheless, the results described here have revealed some very
interesting dynamic behavior for the case y > 1, and some practical
information on the ultimate limits of 7 has also been derived.

Sufficient conditions on Y and z for the existence and
stability of two-pulse limit cycles, are derived analytically here, and
these are verified experimentally by trajectories obtained from the dig-
ital simulator. Certain other sufficient conditions on 7 and 2, for
the nonexistence of two=pulse limit cycles are derived; these too are
verified experimentally. The trajectories in these cases are observed
to converge to four-pulse limit cycles, six-pulse limit cycles, and
higher order limit cycles, depending upon Y and z . Attention is
confined to initial states zo in the region surrounding the origin of
the 2z plane for the analytical work, but it is not so restricted, of

course, for the experimental work.

A. The (7,yo) Plane

In the analytical work described here, the intial point zo will
lie in the dead zone between the limits -1 < Yo < 1. Because of the
symuetry of the state plane trajectories starting from zo’ points
above the x axis are similar to trajectories starting from corre-
sponding zo points below the x axis, so we need only consider the

case 0 < yo < 1, We assume that g > 0, and it turns out that, if
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this condition is satisfied, £ does not influence the qualitative
properties of limit cycle behavior (existence and stability) under study.
In the graphical work, £ 1is taken to be 0.5 because this represents a

practical value for g, and the slope of B is such that the geomet-

rical features of the important curves in thi state plane are evident,

7 and the initial state zo are the only parameters having influence

on this behavior, so that results of the analysis may be displayed on

the (7:?0) plane where 0 <y <1, and 7> 1. (It is understood

that £>0 and z_ ¢ R5). We find boundary lines in (7,YO) that
separate regions of two-pulse limit cycle behavior from regions of "non-
two-pulse limit cycle"” behavior; the latter regions are identified ex-
perimentally as four-pulse, six-pulse, etc. regions. It is convenient to
study the (7,yo) plane by pieces because the geometrical structure of
the state transition equation depends on 7. This structure is based upon

the F(Rs) curve described earlier in Figs. 20, 21, and 22 for the case

7y > 1.

B, The Case 1 < 7 < 3

An accurate plot of the curve F(R5) [see Eq. (4.5)] for oy =3
and g = 0.5 appears in Fig. 30. This curve is representative of the
entire range of 1 < 7y < 3. Consider first z, lying in the small
strip just below the line y =1 so that 1 < vy < (r+1+27) /[2(y+1) ],
(Note that the width of this strip is [(1/2 - A/%/(14+))] and that this

width approaches zero as 7 1,) Then, =z, = Fs(zo) will lie on

1
F(R5), but at a point just below the x axis and in Rl’ Hence,
z, = Fl(zl) will lie at some point below y = -1, and two additional
pulses will be required subsequent to t =t to bring the state 3z

2
back up to the level Yo Thus, zZ, cannot be the initial state of a

trajectory that converges to a two-pulse limit cycle. It can converge
to a higher order limit cycle, and in fact, the experiments show it
converging to a four-pulse limit cycle oscillation.

Consider next the fate of the trajectory starting at zo, in the
small strip of width [1/2 - «f7/(1+7)], just above the x axis, z =

1
Fs(zo) will lie in R6’ at a point on F(RS) in the narrow strip of

width [1/2 - \f7/(1+7)1, just above the line y = -1. Now the trajec-

tory subsequent to t = tl will suffer the same fate as that in the
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F(Rs)
Ba
By
B2
Fig. 30. F(Rs) FOR 7 = 3.
previous example because zy is in the strip in R_, the counterpart
to the strip in R, adjacent to the line y = 1. z, = Fé(zl) will

lie in Rz} just above the x axis, so the trajectory cannot converge
to a two-pulse limit cycle. Experiments show that it converges to a
four-pulse limit cycle, similar to the one in the previous example, but
is not the same one. -

Consider next z € R lying below the line y =1 -~ (y-1)/(y+1)

5!
(thus yo > 1/2 for 1 <7< 3), but not in the narrow strip adjacent

to the x axis. 2z, =F .(z) now lies on F(R.) in R, so thst
1 5 70 5 6

z, = Fé(zl) will lie on F(RG) at a point in R5, at the same y
level as Zo' The trajectory subsequent to t =t will therefore be
in a two-pulse limit cycle oscillation. )

Finally, we consider the initial condition z, € R5, below the

nerrow strip adjacent to y = 1 but above the line y =1 ~ (y-1)/(7+1).

Now, 2, = Fs(zo) will lie on F(Rs) at a point in R in the strip

41
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bounded above by y = (1+7-2,)/[2(7+1)]1 and below by y = -(7-1)/(y+1).

Now since z_. € R z will not lie on F(RG) but at a point to the

1 4’ 2
left of F(RG)’ and at a y level the same as yo. If z2 € R5, then
the trajectory will enter a two-pulse limit cycle, but if Z, lies in

R3 it might not enter a two-pulse limit cycle (although it might do so).

We may determine all possible locations of z, by calculating F4(B4).

z, nust lie at Yo between F(RG) and F4(B4).

Yy is (yo—l), S0 B4 may be represented by

%
_ _ . _ N 14+ 7 —
B4 ={z = (X,¥) : X =1+ 2 gyo + ( 5 ) g,}l Y, (5.1)
so that F4(B4) is

F(B) ={z=((&x,y) 1 x=4-1-~- 4y ~,2 g 1t & 1 -
A A S Vo ~A2Z 2 y

(5.2)

It is of interest to note that the intersection of F4(B4) with B2
occurs for y = 7/(1+7). These curves are shown schematically in Fig. 31,
which is not drawn to scale.

From Fig. 31 it is clear that if 7 = 2 the lower boundary of
the strip containing z0 is at the same y level as the point of inter-
section of B2 and F4(B4). z, then lies in R5’ and we have a stable
two~pulse limit cycle. If 7 < 2, then the intersection point lies be-
low the level of the least Y, SO again z2 will definitely be in

R.. If 2< 7y <3, we need to show that =z lies in R although

5 2 5
it is fairly obvious from Fig. 31 that it does lie there. All possible
points z1 for the case under consideration here are the elements of

the set defined as

= =(x,y) : x=1- gy- £ + 117 & 1;
z, =9z = (xy) : x= £y 5 o fy + 1 ;

2 1+7 7 +1

-(}.- ﬁ_)>y>_7_1 (5.3)
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LOCUS OF POSSIBLE z5=F4(z))

IN THIS
y o STRiP
y= — -2
T+ y= e
et y‘h'—
Y+l

F(Rg)

Fig. 31. INTERSECTION OF F(R6) AND F4(B4) WITH B2.

z2 = F4(z1), so all possible points z2 are the elements of the set

1 Ny 2
(E * ) <y< 7 + 1} .9

We need simply to consider the difference between the x coordinate of

22 and that of Bz, which is x = -1 - gy for 2 < 7 < 3 and for yo,

in the strip of interest. This difference is
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. 7
_ 1+ 7 1+ 7
X, = ¥g = 211 -N/;+ 5 2( 5 ),/y (5.5)

which is positive for y and 7 in the ranges of interest. This proves

z and the trajectory enters a two-pulse limit cycle oscillation.

5 € R5,
One may then conclude that for 1 <7 < 3 all the trajectories

starting from z, points in R between the narrow strips shown in

’
Fig. 31, will converge to stabie two-pulse limit cycles. Those trajec-
tories starting from any point within the strips will not converge to
two-pulse limit cycles. We may now plot a boundary in the (7,y0) plane
showing the demarcation between the two-pulse and non-two-pulse (known
experimentally to be four-pulse) zones. This is done, not to scale, in

Fig. 32, The equation for the left-hand branch of this boundary is

o NT (5.6)

Fig. 32. 7y - Yo PLANE FOR 7 < 3,
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C. The Case 3 < 7 < 5.8285

An accurate plot of the significant curves in the region of the
origin, for 7 =5 and- g = 0.5, appears in Fig. 33. This is repre-
sentative of the situation.for 7 1lying in the range 3 < 7 < 5.8285,
(The significance of this odd number is disclosed at the end of this
section.) Consider first trajectories starting from initial states =z ,

lying in the two shaded strips shown in Fig. 33. Theése are defined by

the ranges

(UPPER STRIP)

2 1+ 7
(5.7
1 N7
z - 1+7>y>0 (LOWER STRIP)

and are the same as the strips shown in Fig. 31; the only difference bhe-
ing that they are a little wider because ) 1is larger. For z € (UPPER
STRIP), z1 will lie on F(Rs) but in R_; hence the trajectory can-

1
not converge to a two-pulse limit cycle for the reasons described in

F(Rg)
R 18 T 77777777, "iZ>A

G
Kexp2  _y-1
Gq Y Y
A - ] =2
2 —_— —_— -——y..
4 T+l
e, y="g

EZL\_"(/// L LA L LN

Bp

y=5,{=0.5

Fig. 33. REGION NEAR THE ORIGIN FOR 7y =35, £ = 0.5.
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Section V,B. Similarly if zo € (LOWER STRIP), the trajectory cannot
converge to a two-pulse limit cycle.
Consider next initial states zo, lying in the strip, just above

the lower shaded strip, defined by the range

1 N7

5 T17 <y < T 1 (5.8)
From points in this strip, z, = F5(z0) will lie on F(Rs) in RG'
and between the points A1 and E1 in Fig. 33. z, = F6(zl) will then
lie on F(RG) somewhere between the points A2 and E2. Note that
Zg € RS’ so now there is an element of doubt as to whether the trajec-

tory will converge to a two-pulse limit cycle, The doubt may be re-

3’ 4’ etc, 23 is calcu-

lying between A2 and E

solved by calculating the positions of =z
22’ 2, 23 will
lie on F3(zz), between the points A3 (which is at the same y level

lated simply as FS(Zz)' For

as Al) and ES; F3(z2) itself will lie slightly to the right of

F(R5). FB(ZZ) is calculated as follows.

Let z, lie on F(RG), defined as the set

—s = Y @ ox = 1 1“L7'/21- D0 < <1)-
F(R) ={z= (9 : x=2-1-4y- 4| N| Y y s

(5.9

Thus, z3 = FB(ZZ) is calculated from the state transition equations

(Table 2) as

NE; ) (5.10)
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Note here that this expression is valid for Zq4 lying between the

points G3 and E3 although our attention at the moment if focused

only on those points lying between A3 and ES' F3(zz) intersects

B1 at point H3, which has the y coordinate
1+
H3 y=-—3 (5.11)

The points on F3(zz), lying between E_ and H

3 3° are in RG' There-~

fore, they will map into the segment E2H4 in R3, and the system will
be in a two-pulse limit cycle, oscillating between a point in R3 and
one in RG' Simulator experiments confirm this expectation, as is

indicated in Table 6.

Table 6
TRAJECTORY FOR 1y = 5, xo = 0, yo = 0.2
x(0) = 0.0000 y(0) = 0.2000 z(0) ¢ R5
x(1) = 1.2873 y(1) = -0.8000 z(1) ¢ RG
x(2) = -1.3746 y(2) = 0.2000 z(2) ¢ R3
x(3) = 1.3748 y(3) = -0.8000 z(3) € R6
x(4) = -1.3746 y(4) = 0.2000 z(4) € R3
x(5) = 1.3748 v(5) = -0.8000 z(5) € R6
x(6) = -1.3746 yv(6) = 0.2000 z(6) € R3

We have now accounted for all of the initial points in Rg(0<:yo<<1),
lying below the level of H4, whose y coordinate is (7-7)/8, and
those lying in the upper strip. Before proceeding with those points
that remain, it is useful to observe the symmetry of this situation about

the line y = 1/2.
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Consider a point starting in the unshaded region above the level of

G This point will map onto F(RS) in R between J1 and GB’

2° 4
which is similar to the segment E2A2 in RB' Thus we can expect

similar subsequent behavior from these points. The mapping F4(J1G3)

will cross B at a péint K at a level y =

2 2’ 3’
(1+y)/8. Thus all points in R; above the level of K

similar to point H
2 will also pro-
duce trajectories that quickly enter two-pulse limit cycles similar to
the one described in Table 6.

The remaining strip, centered in R+ and lying between the levels

5
of H4 and K2, may now be investigated by considering only half of
them, say those below y = 1/2 but above the level of H ., If these

4
are represented by z then zy lies on F3(22) between the points

H3 and M; M has a y coordinate of -1/2. A mapping of this seg-

ment is shown in Fig. 34 (which is not drawn to exact scale) where it

|y

Ay

Y,

L e

Fig. 34. SEQUENCE OF STATE TRANSITION MAPPINGS SUBSEQUENT

+
TO zo € R5.
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is labelled H4M4. Now, H4M.4 will map into R4 onto a segment lying
slightly to the right of H3M, and this in turn will map into a segment

in R just to the left of H4M Subsequent mappings will lie on seg-

3 .
ments anchored in H4 but are iﬁcreasing steadily to the left of H4M4.

This sequence of segments is indicated in Fig. 34 by the fan-like struc-
ture emanating from H4. This fan-shaped beha&ior is greatly exaggerated
in the figure, as is evidenced by the trajectory calculation in Table 7

that traces the leftward migration of the point Mé. The increasing se-
quence of segments is seen to converge rapidly to a polnt that is rather

close to M2' and it enters a two-pulse limit cycle at t = t6' A

similar fan-like structure (not shown) is attached to H3 and lies in R4.

Table 7
TRAJECTORY FOR 7y = 5, x0 = 0, y0 = 0.5
x(0) = 0.00000 y(0) = 0.5 z(0) ¢ R5
x(1) = 1.36237 y(1) = -0.5 z(1) < R4
x(2) = -1.37260 y(2) = 0.5 z(2) € R3
x(3) = 1.37452 y(3) = ~0.5 z(3) € R4
x(4) = -1.37490 y(4) = 0.5 z(4) « R3
x(8) = 1.37498 y() = -0.5 z(5) « R,
x(6) = -1.37500 y(6) = 0.5 z(6) € R3
x(7) = 1.37500 y(7) = -0.5 z(7) ¢ R4
x(8) = -1.37500 y(8) = 0.5 z(8) € R3
x(50) = -1.37500 jy(50) = 0.5 2(50) € R3
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It is of interest to obtain an analytical expression for the in-
creasing sequence just described and to calculate the limit of the

sequence. This is done by taking a point e R mapping it into

3 R4, zz € R3. y2
so the sequence is simply the sequence of x

%o 3’
will be the same as

2 and in turn mapping into

1

coordinates x X
Yor o’ T2

Ky It is convenient to look at the displacement of z from t

boundary B2 and to use the absolute value of that difference as the

sequential variable. This difference is called /Ax and is written as

- -1 - - 5,
A}(k 1 2y Xy (
Application of the state transition equations to z0 and then to z1
gives
2 1+ 2 2{1 +
Ax=(Ax)+z(1+ 7)—2ﬁ\/(Ax)+£ 7Y—£ (5
2 o 2 o) 2
If /x 1s normalized with respect to the horizontal width of R3 at
the level vy, and if the indexing is changed from O0,2,4,6,.. to
1,2,3,4,... through the following definitions
sz A)Xo
M. = - H M = - (5.
1 1+y % © 1+y %
£ _E_) NY E(—E— NY

then the sequence may be represented by the recursive formula relating

M

to )
i

Mi+1

2
(1+7)

(3+7)
1+ y

i+l i (1+7)

]

and the properties of

%
[ 8 } Mg + 1 +
y i

We note that ¢ has dropped out of the picture,

7 and vy,

the sequence depend only on

76

he

12)

.13)

14)

(5.15)

each of which is constant for any



given trajectory. If a term Mj in the sequence should exceed 1, then
the trajectory point z2j will not lie in R3, -and the system will not
go into a two-pulse limit cycle oscillation.

We can calculate the limit of the sequence (5.15) by setting
Mi+1 = Mi and solving for M = Mi; this yields

_1+7-8y (5.16)
1+y %
o(52) v
If the data shown in Table 7 is used in (5.16), M turns out to be
1/(246), z[(1+7)/2]'/2\/37 is /6/4, so that the limit of Ax is 1/8.
The sequence limit predicts an ultimate x coordinate in R3 of
-1 - gy - 1/8 = -1.375., This checks exactly with the observed values.

It is clear from (5.16) that for 7 in the range 3 < y < 5.8285,
and y 1in the strip bounded by the levels of H4 and M2, M will not
exceed 1, so that every Zo outside the shaded strips but inside R;
will generate trajectories which converge to two-pulse limit cycles,

The boundary in the 7,y0 plane, started in Fig. 32, may now be extended
up to y = 5.8285, using formula (5.6).

We now turn our attention to the case 7y > 5.,8285 by noting first
the origin of this odd number. In Fig. 33, which is drawn for j = 5,
it can be seen that if ) is increased, point A1 will move downward

and E1 will move upward, and they will meet when their y coordinates

are equal--that is, for that y satisfying

';=—["j_7_ +1] (5.17)

1
1+ 1+ 2

or, for y =9, Further, point H3 will meet E3, i.e., FS(ZZ) will

be completely outside of R6 when the y coordinate of H3 is the

same as that of E3

1

7 - —['J;f + l] _ (5.18)

+
8 1+ 7 2

This equation is satisfied for 7 =~ 5.8285,

7



The meeting of H3 and E3 produces a significant qualitative
change in the behavior of the system, because with F3(z2) detached
from RG’ the fan-like structure shown in Fig. 34 loses its anchor

peint H and the pattern of increasing segments produces a wave-like

4’
pattern in place of the fan-like pattern. We now turn to this interest-

ing situation.

D. The Case 7y > 5.8285

The region of the origin, for y =7, £ = 0.5, is drawn accurately
in Fig. 35. This example is representative of all the cases 7y > 5,8285.
Consider first the trajectories starting from z0 points, in the shaded
strips adjacent to the lines y =0 and y = 1, For z in the lower
strip, zy will be in RG’ so that z,, will lie on F(RG) but in Rz;
hence, the trajectory cannot converge to a two-pulse limit cycle. For
z in the upper strip, z1 will lie on F(RS) but will be in Rl’
this trajectory too will suffer a fate similar to that of the one starting

so

in the lower strip. Note that what happened to the first trajectory at

t = tz is the same thing that happened to the second trajectory at

t = t,.
1

Fig. 35. REGION NEAR THE ORIGIN FOR 7y =7, £ = 0.5,
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given trajectory. If a term Mj in the sequence should exceed 1, then

the trajectory point ZZj will not lie in R3, -and the system will not

go into a two-pulse limit cycle oscillation,
We can calculate the limit of the sequence (5.15) by setting

M, = M. and solving for M = M_; this yields
i+l i i

_1+7 -8y

o)

M (5.16)

If the data shown in Table 7 is used in (5.16), M turns out to be
)
1/(248), 2[(149)/2]%\7 is 674, so that the limit of Ax is 1/8.

The sequence limit predicts an ultimate x coordinate in R3 of

-1 - gy - 1/8 = -1,375. This checks exactly with the observed values.
It is clear from (5.16) that for 7 in the range 3 < ¥ < 5.8285,

and y in the strip bounded by the levels of H and M M will not

4 2’

. . +
exceed 1, so that every zo outside the shaded strips but inside R5

will generate trajectories which converge to two-pulse limit cycles.
The boundary in the 7,yo plane, started in Fig. 32, may now be extended
up to 7 = 5.8285, using formula (5.6).

We now turn our attention to the case 7 > 5.8285 by noting first
the origin of this odd number. In Fig. 33, which is drawn for 7 = 5,
it can be seen that if » 1is increased, point A will move downward

1

and E1 will move upward, and they will meet when their y coordinates

are equal--~that is, for that 7 satisfying

1-2_ -[_AEZ_ + l] (5.17)

1+7 2

or, for 7 = 9. Further, point H3 will meet E3,

be completely outside of R6 when the y coordinate of H3 is the

i.e., F3(z2) will

same as that of E3

_1+7=_[\/7_ +l] (5.18)

1+ 7 2

This equation is satisfied for 7 = 5.8285.

(¥




Consider next the trajectories starting from zo, lying in R+

5
between 1/2 <y < [1/2 -.[7/(1+7)]1. z, then lies on F(Rs) between
the points E1 and Ml' Therefore, z,, will lie on a curve entirely

in R3, a portion of which (the mapping of segment ElAl) is coinci-~
dent with F(RG)’ the remainder of it (the mapping of AlMl) lies to
the left of F(RG)' This is shown in Fig. 35,

The segment A2M2 is drawn out of scale for clarity. z4 lies on

the mapping F Mz), and because 7y is greater than 5.8285, this

3(E2
mapping, denoted as E3M3 in the figure, lies entirely within R

(E3M

4
3 is also drawn out of scale.)

The behavior of the trajectory subsequent tq t = t3 may be studied
from the qualitative sketch of the iterative mappings of E3M3 in the
region near Ez. This region is shown in exaggerated scale in Fig. 36.
Here E4M4 is the mapping of E3M3. Note that E4M4 intersects B4
at a point I Those state points lying on the segment E4I4,

hence,

. z
4 4’
will not lead to a two-pulse limit cycle because they are in Rz;

they are eliminated from further consideration. is mapped into

R

I4M4
on a segment (not shown) lying just to the right of EM and

4’ 33

Ba y

F(Rg)

Moo~ MgMeMaM,

Yo/

3
—)

Fig. 36. SEQUENCE OF STATE TRANSITION MAPPINGS LEADING TO
TWO-PULSE AND NON-TWO-PULSE OSCILLATIONS.

9




that segment is mapped again into IGMG' must lie slightly to the

left of 1

16M6
My so that a small portion of it projects into R2, and
the points on this small portion are lost as candidates for states lead-
ing subsequently to two-pulse limit cycles. The sequence of mappings
Mé, Mé, M10’ ... continues until it converges to the curve shown as

Mooyc in Fig. 36. This sequence of mappings which resembles a "wave
motion" may be described in terms of the recursive formula derived in

Section V.C. The point vy may be determined from this formula by

c
setting Mi+1 = Mi = M°° = 1. This yields

1+ 7y

- 1+7 (5.19)
Ve 8(3 + 2A/2)

which is the formula separating the (7,y°) plane into two-pulse and
non-two-pulse regions. A dramatic demonstration of the converging se-
quence of segments is given if two trajectories, each starting in R;

at t =0 but with slightly different y0 coordinates, one just
slightly above yc and the other just slightly below Yo are calcu-~
lated. This is done here for 7y = 16. Equation (5.19) gives Y, =
0.36459 as the boundary separating the two-pulse and non-two-pulse
regions., Simulation runs with z, = (0,0.36460) and z, = (0, 0, 36458)
were made, and the results are shown in Tables 8 and 9. Note in Table 8
that the sequence converges on the 26th step to an x coordinate of
-2,06250, and that in Table 9, on the 22nd step, the x coordinate is
-2,06249, exactly the same as x(22) in Table 8, This slight differ-
ence (0,00002) in the y coordinates of the two trajectories is enough
to place z(22) in R3 on the first trajectory but in R2 on the
second! It is also interesting to notg that the second trajectory, hav-

ing entered R for the first time at t =t converges eventually

2 22’
to a four-pulse limit cycle at t = t32.

The fate of trajectories starting in the upper half of R; is
similar to those starting in the lower half of R;, except, of course,
they converge to different limit cycles.

We can now complete the portrait of the (7,Y0) plane started in

Fig. 37. The boundary separating the two-pulse limit cycle inital points
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that segment is mapped again into 16M6. 16M6 must lie slightly to the
left of I4M4, so that a small portion of it projects into R2, and
the points on this small portion are lost as candidates for states lead-
ing subsequently to two-pulse limit cycles. The sequence of mappings

M M continues until it converges to the curve shown as

6' '8’ M10’ ot
Mooyc in Fig. 36. This sequence of mappings which resembles a "wave
motion'" may be described in terms of the recursive formula derived in
Section V.C, The point y may be determined from this formula by

c
t i = = = . i i
setting Mi+1 Mi McO 1 This yields

1+

I A (5.19)
Ve 8(3 + 2A2)

which is the formula separating the (7,yo) plane into two-pulse and
non-two-pulse regions. A dramatic demonstration of the converging se-
quence of segments is given if two trajectories, each starting in R;

at t =0 but with slightly different Y, coordinates, one just
slightly above yc and the other just slightly below yc, are calcu-
lated. This is done here for 7 = 16, Equation (5.19) gives V. =
0.36459 as the boundary separating the two-pulse and non-two-pulse
regions., Simulation runs with z, = (0,0.36460) and z, = (0, 0. 36458)
were made, and the results are shown in Tables 8 and 9, Note in Table 8
that the sequence converges on the 26th step to an x coordinate of
-2.06250, and that in Table 9, on the 22nd step, the =x coordinate is
-2,.06249, exactly the same as x(22) in Table 8. This slight differ-
ence (0,00002) in the y coordinates of the two trajectories is enough
to place z(22) in RS on the first trajectory but in R2 on the
second! It is also interesting to note that the second trajectory, hav-

ing entered R for the first time at t =t converges eventually

2 22’
to a four-pulse limit cycle at t = t32.

The fate of trajectories starting in the upper half of R; is
similar to those starting in the lower half of R;, except, of course,
they converge to different limit cycles.

We can now complete the portrait of the (7,yo) plane started in

Fig. 37. The boundary separating the two-pulse limit cycle inital points
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GAMMA( AMPLTFIFR FIRING THRFSHIOLD )= 16,000C L=2.5070

K= ) X(K)= De00NND Yi{K)= 0e36456C PEGION=
K= 1 X(K)= le9721 Y({K)= ~Ne63540 REGINN=
K= 2 X(K)= -1.90491 Y{K)= De364560 REGION=
K= 3 X(K}= 195683 YiK)= -0e63540C REGION=
K= 4 X{KY= -2."N0R32 Y(K)= De36460 RFGION=
K= 5 X{(K})= ?2eN2481 V({K)= —Neb354N PEGI{IN=
= A X{K})= —2a742%2 Y{K)= De364860 PFGION=
K= 7 X{K)= 2e 4845 Y{K)= —Ne6354N0 REGINN=
K= 8 X{K)= -2e7354G7 Y{K)= 043646C REGINN=
= g X{K)= 25719 Y{K}= -0.63540C REGTON=
K= 10 X{K)= —2eN5G64 Y(K)= De3646N REGION=
K= 11 X{K)= 2476248 Y{K)= —Ne63540 REGINN=
K= 12 X(K)= —2:N614) Y{K)= Ne36460 REGINON=
= 13 X{K)= 2406173 Y{K}= —0,63540 REGTON=
K= 14 X{K)= —2,06208 Y{K})= 0e3K460 REGION=
= 15 X{K)= 2606220 Y(K)= ~0e6354C RFGION=
= 1& X{K})= -2 6234 Y{K)= Na364607 REGION=
= 17 X{K)= 2.06238 Y{K)= -NeH3540 REGINN=
K= 1°¢ Y(K)= -2 06244 Y(K)= Oe36460 REGION=
K= 19 X{K)= 2.01A245 Y{K)= -Nah354C REGION=
K= 2n ¥Y{(K)= —2e006247 Y(K)= Ne3646C RFGION=
K= 21 X{K)= 2.N6248 Y{K}= —Ne63540 REGION=
= 22 X(K)= =240 A249 Y{K}= Ne2ALEN REGION=
K= 273 X{(K)= 2.N6247 V{K}= -(0a.63540 RFGINN=
= 74 X(K)= 206247 Y(K})= 036460 REGTON=
K= 258 X{K)}= 240A240 Y{K}= -Ne5354N REGINN=
K= 26 X{K)= -2.M6250 Y(K)Y= Na356460 RFGION=
K= 27 X{K)= 2.06250 Y(K)= —Ce63540 REGINN=
K= 28 X{K)= ~2s0A2EN Y{K})= Ne36460 REGTON=
K= 7¢ X{K)= 2e N625T Y{K)= ~Na63540 REGICN=
K= 2n X(K)= ~2«NAR2EN V(K)= Ne3646N0 PEGINN=
K= 131} X{K)= 206250 Y{x)= —Ne6H3540 RFEGION=
= 3¢ X{K)= —2e 06250 Y(K})= Ne36460N REGION=
K= 32 X{K)= 2.N5250 Y(KY= -0.63540 REGION=
= 34 X{(K)= ~24CA25C Y(K)= Ne36460 REGTON=
= 35§ X{K)= 206250 Y(K)= ~-0.6354N REGION=
K= 3n X(K)= =25 NA280 Y{K)= De3RH4AD REGINN=
K= 137 X{K)= 2,06250 Y{K)= ~0e63540 REGINN=
K= 13K X{K})= 2626250 Y{K)= 0e36460 RFGINN=
K= 3¢ XK= 2. NE2BN Y(K)= —Neh3540 QEGINN=
= 4C X{K)= ~2eNH2ET Y{K)= Na364A40 RFGION=
= 41 XY{K)= 206257 Y(K}= —0eH3540 REGIQON=
K= 4?2 XK= —24N6257 Y{K})= Qe36460 REGION=
K= 43 X{K)= 26762870 Y{K)= -De.6354" REGION=
K= 44 X{K)= -2e06259 Y(K)= 0436450 REGIQON=
K= 45 X{K)= 2.06250 Y{K}= —Ne63540 REGINN=
K= 46 X{K)= —2eAZRD YiK)= Na3646N0 REGINN=
K= 47 X{K)= 206258 Y(K)= ~NeH3540 REGINN=
K= 48 X(K)= -2.06250 Y{K)= Ne36460 RFGION=
K= 4G X(K})= 2e 06250 Y{K)= -0e63540C REGION=
K= &C X{K)= —2.M6250 Y(K)= Ne3646C REGION=

Table 8

TRAJECTORY FOR 7 = 16, £ =0.5, x =0, y = 0.36460
(o)
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GAMMA( AMPLIFIER FIRING THPESHOLD

K= € X{K)= Ne ANQCO
K= 1 X{K)= 1672790
K= 2 X{K)= -1,97491
K= 3 X{K})= 1.395453
K= 4 X(K)= -2.010832
K= 5 X(K})= 212480
K= & X{X)= —-2a74252
K= 7 X({K}= ?eN4845
K= 8 X{K)= ~2e15497
K= 9 X{K)= 2.7671°
K= 10 X(K)= =2aNE964L
= 11 X{K)= 2.0AN4GA
= 17 X{K)= -2-N6141
= 13 X{K)= 2.N6173
K= 14 X{K}= —2.06208
= 15 X(K)= 2405220
K= 16 X{K)= ~2.76234
= 17 X{KY= 2416238
= 1A X{K)= —2e0A244
= 19 X(K)= ?eN6245
K= 20 ¥{K)= —2+0A247
K= 21 X{K)= 2eNH248
K= 22 X{(K}= =2.06249
K= 23 X{K})= -1,18629
= 74 X(K)= 272357
K= 25 X(K})= 2630821
= 26 X(K)= ~220917
= 27 X{K)= -1.71129
K= 7?8 X{K}= 272781
= 29 X(K)= 2630841
= 30 X({K}= —-2,720930
= 3 X{K)= -1.71145
= 32 X{K})= 2.020R2
= 33 X{K)= 2630841
= 34 X(K)= —220973N
K= 35 X{K)= -1.71145
K= 3¢ X(K)= 242082
= 37 X{K)= 230841
= 38 X(K}= —2+2093G
= 39 X{(K)= -1e71145
K= 40 X{K)= 2.N208R2
= 4] X{K)= 7230841
K= 42 X{(K}= -2e20913N
K= 43 X(K)= -1.71145
= 44 X{K})= 202082
= 45 X(K}= 230841
K= 46 X{K)= —-242093n
K= 47 X{K)= -1l.71145
K= 48 X(K)= 2472082
K= 49 X(K)= 2430841
K= 53 X{K)= —220930
Table

TRAJECTORY FOR 7 = 16,

9

1= 16,0000 L=04.5200

YIK) = Ne36458
Y(K)=  =0,A3542
Y{K)= 0e36458
YIK)=  =D.63542
Y(K)= Ne36453
Y(KI=  =N,63542
Y{K)= 0436458
YI{K)=  =D.h3842
Y(K)= 0e36458
Y(K)=  =0.63547
Y(K)= 7.36458
Y(K)=  =N.6354)
YIK)= N.34458
Y(K)=  =0.63542
Y(K)= 0.36458
Y(K)=  —0.63542
Y(K)= 0e36458
YI{K)=  -0.63542
Y(K)= De35458
Y{K)=  =N.63542
VIK)= Ne36458
Y(K}=  -0,63542
Y(K)= N.36458
Y(K)= 1.36458
Y(K)= Ne36458
Y{KI=  ~0.63542
Y(K)= 0e34658
YIK)= 1.36458
Y(K)= De35458
Y(K)=  -0.53542
Y(K)= 036458
Y(K)= 136458
Y(K)= Ne36458
Y{K)=  =0.63542
Y(K)= Ne3€458
Y(K)= 1.36458
Y(K)= 2.36458
YIKY=  —0.63542
Y(K)= Ne356458
viK)= 1.36458
Y(K)= Ne36453
Y(K)z  ~0,63542
Y(K)= 1.36458
Y(K)= 1.326458
Y(K)= Ne36458
Y(K)=  -0,63547
Y(K)= 0e35458
Y(K)= 136458
Y(K)= 036458
YIKY=  —0.563542
VIK)= Ne36458
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x, =0, y_ = 0.36458

REGION=
REGINN=
REGTNON=
REGIIN=
REGION=
REGINAN=
REGION=
REGINN=
RFGINN=
REGION=
REGION=
PFGTNN=
REGTON=
REGION=
PEGICON=
RFGINN=
RFEGINN=
REGION=
RFGINN=
REGION=
REGINN=
RFGION=
RFGION=
REGION=
REGINN=
REGINN=
REGINN=
REGINN=
REGINN=
PEGTINNS=
REGTON=
REGINN=
REGINN=
REGINN=
RFGION=
REGION=
REGTON=
REGION=
RFGION=
REGION=
REGINN=
RFEGION=
PEGION=
REGINN=
FESIONS
PEGINN=
REGINN=
REGION=
RFGINN=
REGION=
REGINN=
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from the rest of the plane is given by (5.6) and (5.19) as

1 _ N7
Vo=3 137 (1 <7y < 5.8258)
(5.20)
y = 1+ 7 5.8258 < y
°©  8(3+ 2,2 y, < 0.5

These expressions give the boundary for 0 < Yo < 0.5. The boundary it-
self is symmetrical about the Yo = 0.5 line, and so the complete curve

is approximately that shown in Fig. 37.

26
Six
24r \ PULSE
22[_ \ 7223137
20t
FOUR FOUR
18f  PULSE PULSE
16l
14|
Y
12} TRAJECTORIES
STARTING FROM
1o} POINTS IN THIS
REGION CONVERGE TO
. TWO-PULSE LIMIT CYCLES
6
Py
2

Fig. 37. 7 - y_ PLANE FOR 7 < 23.

It is interesting to note that (5.20) implies that for > 22,3137
there can be no two;pulse limit cycles. This point was verified experi-
mentally by running two trajectories, each starting at Yo = 0.5 but one
for 7y = 22,31 and the other for 7 = 22,32, The results of these runs
are listed in Tables 10 and 11, The trajectory for 7 = 22,31 converges,
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GAMMA( AMPLIFIER FIRING THRESHOLD )= 22.31

OV~ MbPON-~O
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A WN

K=16
K=17
K=18
K=19
K=20
K=21
K=22
K=23
K=24
K=25
K=26
K=27
K=28

K=30
K=31
K=32
K=33
K=34
K=35

K=37
K=38
K=39
K=40
K=41
K=42

K=44
K=45
K=46

K=48
K=49
K=50

X{K)= 0.00000
X{K}= 1.95701
X{K)= -2.14883
X{K)= 2,25492
X{K)= -2.,3205¢
X{K)= 2,36339
X{K}= -2,39210
X{iK)= 2441171
X{K)= -2.42524
X(K)= 2.43466
X{K)= —-2.44124
X{K)= 2444585
X{K)= =-2,44910
X{K)= 2,45138
X{K)= -2.,45300
X{K)= 2,45413
X{K)= -2.,45494
X{K)= 2445550
X{K)= —2,45591
X{K)= 2.,45619
X{K)= —-2.45639
X{K)= 2.45653
X{K)= —2.45663
X{K)= 2,45670
X{K)= -2,45675
X{K}= 2.45679
X{K)= -2,45681
X{K)= 2.45683
X{(K})= -2.,45684
X{K)= 2.45685
X{K)= -2.45686
X{(K)= 2.45686
X{K)= ~2.,45687
X{K)= 2,45687
X{K)= —-2.45687
X{K)= 2.45687
X{K)= -2.,45687
X{K)= 2.,45687
X(K)= -2,45687
X{K)= 2,45687
X{K})= -2,45687:
X{K)= 2.45687
X{K}= -2.45687
X{K)= 2.45687
X{K)= ~-2.45687
X{K}l= 2,45687
X(K)= -2,45687
X(K)= 2.45687
X{K)= —2445687
X{(K)= 2.45687

X{Kl= -2,45687

Y{K)= 0,50000
Y{K)= -0.50000
Y{K)= 0.50000
Y{K)= -0,50000
Y{K}= 0.50000
Y{K)= -0,50000
Y{K)= 0.50000
Y{K}= -0.50000
Y{K)}= 0.50000
Y{K)= -0.50000
Y{K)= 0450000
Y{K)= —0450000
Y{K)= 0.50000
Y{K}= -0.50000
Y{K)= 0.50000
Y{(K)= -0,50000
Y{K)= 0.50000
Y{K)= -0.50000
Y{K)= 0650000
Y{K)= -0.50000
Y{K}= 0.50000
Y(K)= ~0,50000
Y{K}= 0450000
Y{K}= -0650000
Y{K)= 0.50000
Y{K)= -0,50000
Y(K}Y= 0.50000
Y{(K)= -0.50000
Y{K)= 0.50000
Y{K)= -0450000
Y{(K)= 0.50000
Y{K)= -0.50000
Y(K)= 0.50000
Y{K)= -0.50000
Y{K)= 0,50000
Y(K)= -0.50000
Y{K)= 0.50000
Y{K})= -0.50000
Y{K)= 0,50000
Y{K)= -0,50000
Y{K)= 0450000
Y{K})= -0,50000
Y{K)l= 0,50000
Y{K)= -0.50000
Y{K}= 0.50000
Y(K)= —-0,50000
Y{K)= 0,50000
Y{K)= -0,50000
Y{K)= 0.50000
Y{(K)= -0.50000
Y{K}= 0450000
Table 10

L=0.5000

REGION=
REGION=
REGION=
REGIDN=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGIGON=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGTON=
REGION=
REGION=
REGION=
REGION=
REGIDN=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=

TRAJECTORY CONVERGING TO TWO-PULSE LIMIT

CYCLE FOR 7y = 22,31
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GAMMA{ AMPLIFIER FIRING THRESHOLD )= 22.32

K=
K=
K=
K=
K=

VNN PWNO

X{K)= 0.,00000
X(K)= 1.95727
X{K)l= -2,14919
X{K)= 2425534
X{K)= —-2.32105
X{K)= 2.36389
X{K)= —2.39264%
X{K}= 2441226
X{K)= -2,42581
X{K)= 2443524
X{K)= —-2,44183
X(K)= 2.44646
X{K)= -2.44971
X{K¥i= 2445200
X{K)= -2.45361
X{(K)= 2.45475
X{(K)= -2.45556
X{K}= 2.45613
X(K)= -2.45653
X{K)= 2.45681
X{K)= —-2.,45701
X{K)= 245716
X{K)= -2.45726
X{K)¥= 2.45733
X{K)I= 126172

X{K)= =2.34105
X{K)= -2.74723
X{K)I= -2.13556

X{K)= 2437630
X{K)= 2477543
X{K)= 2.18243

X{K)= —2.38530
X{K)= -2.78266
X{K)= -24,19421

X{K}= 2438771
X{K)= 2.,78460
X{K)= 2.19737

X{K)= -2.38837
X{K)= -2.78513
X{K)= -2.,19822

X{K}= 2.38855
X(K}= 2.78528
X{K)= 2.19846

X{K}= —2.38860
X{K)= —-2478532
X{K)= -2,19852

X{K)= 2.38861
X{K)= 2.78533
X{K)= 2.19854

X{K)= -2.38862
X{K)= -2.78533

TRAJECTORY APPARENTLY CONVERGING TOWARD A SIX-PULSE

Y(Kl= 0650000
Y{K)= -0.50000
Y{K}=- 050000
Y{K}= -0.50000
Yi{K}= 0.50000
Y{K)= -0.50000
Y{K)= 0.50000
Y(K)= —-0.50000
Yi{K)l= 050000
Y{K)= —-0,50000
Y{K}= 0450000
Y{K}= ~0,50000
Y(K)= 0.50000
Y(K)= -0.50000
Y(K)= 0.50000
Y{K}= -0.,50000
Y{K)= 0.50000
Y{K)= -0.50000
Y(K)= 0.50000
Y{K)= —-0.50000
Y(K}= 0.50000
Y{K)= -0.50000
Y{K)= 0450000

Y(K)= -0.50000
Y{K)= -1.50000
Y{K)= -0.,50000

Y(K)= 0450000
Y{(K}= 1.50000
Y(K)= 0650000

Y{(K}= -0.50000
Y{(K)}= -1.50000
Y{K)= -0,50000

Y{K)= 0.50000
Y(K}= 150000
Y{K)= 0450000
Y{K}= -0.50000
Y(K)= ~-1.50000
Y(K)= -0.50000
Y(K}= 0.50000
Y{K}= 1.50000
Y{(K)= 0450000

Y(K)= -0,50000
Y{K)= =-1.50000
Y{K)= -0,50000

Y{K)= 0,50000
Y{K)I= 1.50000
Y{K}= 0.50000

Y{(K)= -0450000
Y{K)= ~-1.50000
Y{K)= -0.50000
Y{K)= 0450000

LIMIT CYCLE FOR 7y =
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L=0.5000

REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=

22,32
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as expected, to a two-pulse limit cycle on the 32nd step. For 7 = 22,32,
the trajectory follows a path which appears to be close to one which con-

verges to a two-pulse limit cycle, zk jumping back and forth between

R3 and R4, up to the 23rd step. At this point, =z enters Rl’

the trajectory diverges away from a two-pulse limif cycle; it appears to

and

be converging toward a six-pulse limit cycle at the end of the run.

It is also interesting to note that at the point where the two
boundary sections meet (y = 5.8285, y = 0.14645), (5.20) indicates that
0.14645 [derived from the

R

)

the slope of the boundary curve for yo
first equation of (5.20)] is the same as the slope for y = 0.14645" [de-
rived from the second equation of (5.20)].

Numerous experimental runs were made to verify the boundary shown in
Fig. 37, and these all indicated that (5.20) was valid to within the ac-
curacy of the computer (five decimal places). Many other runs were made
to determine the nature of the trajectory for starting points outside the
two-pulse region. Four-pulse, six-pulse, eight-pulse, and ten-pulse
limit cycle oscillations.were observed. (The eight- and ten-pulse oscil-
lations were observed only for extreme values of ¥, in the range of
50 to 100.) Approximate boundaries between the two-pulse, four-pulse,
and six-pulse regions were established and are shown in the dashed lines
of Fig. 37.

It should further be noted that the studies described in this chap-
ter, the results of which are essentially summarized in Fig. 37, are
concerned solely with trajectories that start from points within the
dead zone between the limits -1 < y < 1. (The 7,yo portrait for
-1 < yo < 0 1is the same as that in Fig. 37 because of the symmetry of
the system.) Several experimental runs were made for initial points
outside the dead zone; some of these converged to two-pulse limit cycles
and some to four-pulse limit cycles. Further study of the convergence

properties of such trajectories is suggested in Section E of Chapter VII.
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Chapter VI
SUMMARY OF RESEARCH RESULTS

The principal result of the work described in the earlier chapters
of this report has been the discovery of the geometrical properties of
the state transition equations; and, these equations lead to the solu-
tion of the basic question regarding the existence, stability, and con-
vergence properties of two-pulse limit cycles. This solution is sum-~

marized by the two conditions

£>0
(6.1)

described in Chapter IV. An equally important application of the geo-
metrical properties of the state transition equations uncovered the
intricate structure of the region near the origin of the state plane
that exists for )y > 1 and that explain the fascinating dynamic be-
havior of the system as it diverges from the two-pulse limit cycle to-
ward the higher order limit cycles. The necessary conditions for exis-

tence of two-~pulse limit cycles are

(ST

7 < 8(3 + zﬁ) v, -1 (yo < ) (6.2)
derived in Chapter V. These conditions are also typical of the practical
information resulting from the application of this geometrical approach
to analysis.

The describing-function-like approach used in Chapter II, to deter-
mine the necessary steady-state characteristics of the modulator, appears
to be new--at least it is not a widely known technique and it yielded
very useful results in this study.

Otheg information, produced by this work and not previously avail-
able, includes the state transition equations for the specific class of

attitude control system with a dead-band element. Only equations for
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the case ed = 0 (no dead band) are available [2], as far as the author
is aware. The computer program based on these equations (see Appendix)
makes convenient experimental work possible on this system,

Other by-products of the principal results reported are some ideas
for future research work, This work might yield a better understanding
of some other practical problems associated with the design of attitude

control systems, These suggestions for future work are listed and de-

scribed briefly in the following chapter.
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Chapter VII

FUTURE WORK

A, Different Modulators

The IPF modulator used in the system described here is only one of
a class of modulators having the specific steady-state characteristics
determined in Chapter II to be necessary for the existence of two-pulse
limit cycles. Several other commonly used modulators, such as the in-~
creasingly important "derived rate" modulator [4,5], could probably be
studied using the geometrical properties of the state transition equa-
tions for the systems in which they are used.

Modulators which produce unbalanced impulses, uniform for clockwise
torques, and also uniform, but of different magnitude, for counterclock-
wise torques, might also be studied using this approach.

Modulators in which the threshold error 7y is not constant but
fluctuates randoﬁly might produce important variations in the regular
limit cycle behavior of attitude control systems. This work has shown
that if 7 1is constant, two-pulse limit cycles will occur. for 7 any-
where in the range -1 < 7 < 1. This result gives grounds for believing
that 7 could fluctuate by small amounts from time to time without up-
setting the desired two-pulse limit cycle. If this is true, what are the

limitations on the fluctuations which are allowed?

B. Torque Disturbances

If a small constant torque is applied to the satellite body by some
external agent such as aerodynamic drag, radiation pressure, or gravity
gradients, a "one-pulse” limit cycle oscillation is possible. The con-
stant disturbance torque causes a small acceleration in one direction
which must be countered occasionally by an impulse from the controller.
It seems that the limit cycle oscillations of such a system could be
studied by making modifications to the state transition equations de-

rived here.
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C. Different Controlled Bodies

The controlled body studied here is the simplest model of a rigid
satellite. It is a second order system, and although the modulator it-
self is a first order system, it is a "degenerate" one. This allows the
dynamic nature of the entire system to be represented by second order
difference equations (see Chapter III). If some "damping" is added to

the body, making its transfer function

8(s) _ 1

- 2
M(s) Js + fs

(7.1)

the whole system may still be represented by second order difference
equations, which will be slightly more complex than those treated here.
The trajectories will no longer be segments of horizontal lines and the
limit cycle behavior might be different from that exhibited here, espe-
cially for large values of f.

Bodies which are not rigid will have transfer functions of an order
higher than two. It seems unlikely that any significant dynamic prop-
erties of such a system could be determined from studies on the plane,
If a geometrical approach were to be used, it would be a higher dimen-
sional approach and therefore much more obscure if a graphical treatment
were alttempted. This indicates a more abstract approach, as discussed

briefly in Section F below.

D. Sensor Noise

Attitude sensors always contain some noise on their output signals.
For this reason rate circuits, in systems of the type studied here, have

higher order transfer functions such as

e, (s8)
N _ 1 + as (7.2)

B
(1 + Ts)

e (s)
s

where the time constant T 1is chosen to diminish the ill effects of the

noise content of eN(t) as much as possible without seriously altering

90



the fidelity of the Kab(t) term in eN(t). An exact analysis of the
system containing a rate network with T # 0 would require a higher
dimension state space. It might be possible to model the noise proper-
ties of the sensor by using the same system as that shown in Fig. 1 and
adding an "equivalent noise" at the output of the simple lead circuit.
This might lead to a detailed study similar to those which would result
from allowing 7 to fluctuate rahdomly with time, or from incorporating

a disturbance torque into the system as suggested above.

E. Stability and Convergence Properties of Higher Order Limit Cycles

The work described in Chapter V establishes conditions under which
two-pulse limit cycles will not occur, but it does not prove analytically
what Eill happen to the system under those conditions. One expects, on
intuitive grounds, that higher order limit cycles will occur, and many
such oscillations were, in fact, observed from the computer experiments.
However, it remains to be shown analytically, for example, what condi-
tions must be met for a stable four-pulse limit cycle to exist, and what
the convergence properties of that limit cycle are. The same questions
can be asked about six-pulse, eight-pulse, etc. limit cycles. It seems
these questions can be approached using the same techniques developed
here for the two-pulse 1limit cycle. The computer simulation of the sys-
tem can be very helpful, not only in verifying analytical results but
also in discovering dynamic facts about the system which themselves sug-

gest modifications and improvements in the analytical techniques used.

F. Abstract Studies

The geometrical properties of the second order state transition
equations treated here suggest that higher order systems might be ana-
lyzed in a similar manner if topological methods of mathematics can be
brought to bear on the higher order equations. A recently published
book by 0. Hajek [19] offers an excellent starting point for anyone who
is interested in extending the workhin this direction. Hajek introduces
the topological notions in two-dimensional systems.

Aside from the purely intellectual excitement offered by such an

abstract study, it might lead to some practical insight into how multiple
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nonlinear feedbacks from the state variables could be used to drive
multiple pulse-modulators, each providing an impulse input to the multi-
variable plant, It seems that it would be exceedingly difficult to ob-
tain practical results from such an abstract analysis, but it also seems
that many exceedingly efficient control systems, such as biological
mechanisms, operate precisely in the manner described above. Therefore,

the prize of such a research effort is worthy of the challenge.
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Appendix

DIGITAL SIMULATION

The digital computer program which constitutes the simulation of
the attitude control system through the solution of the basic mapping

function

Ze ~ T3
is listed here. Enough comments are included in the program to make it
self-explanatory to anyone with some knowledge of Fortran programming.

A master deck of cards, from which this program was printed, is on file
with the author, and a copy deck may be obtained from him upon request
to the Electrical Engineering Department, University of Washington,
Seattle, Washington, 98105.

The input information for a trajectory calculation is simply
(xo,yo) and the desired values for g and . The program is set up
so that a whole series of different trajectories, each for a different
combination of (xo,yo), £, and ¥y, may be computed on one run of the
computer. The program copy shown here is the one used to obtain the
data listed in Tables 8 and 9.

Included in this program, but not used in the work described in the

earlier chapters, is the calculation of an expression

Vk = xi + kayk + Byi
This is called a Lyapunov function, and values for the two constants B
and C must be supplied to the computer. V(k) is printed out along
with x(k) and y(k).
Also included here is a readout sheet illustrating the format in
which the trajectories are listed. This one, for x0 = 15, y0 = -0.1
y =1, and g = 0.5, lists the data plotted in the smallest curve of
Fig. 25. Note here that the two-pulse limit cycle is entered on step

'number.40.
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SWATFOR

C ReNeCLARK LIMIT CYCLE OSCILLATION STUDY

30 FORMAT)-1-s—-GAMMA) AMPLIFIER FIRING . IHRESHOLD %=—3F8e496Xs~L=—y
1 F6elt 35X s~ LYAPUNOV CONSTAN O C= —sF4,42y-
31 FORMAT)— —9b6X9~K==91394X9=X)K¥=—9F1lle594x9—T)K¥=—yF1lla5s
15X9~REGION==9 129X s=V==sF10e3%
32 FORMAT)=0—s— THE SYSIEM Is Al REsi1 IN tHE DEAD 4ONE)v=u-sFBe4y
1=)X)=sFTols—=% '
INTEGER REGION
REAL X)1251%sY)251%4V)251%
REAL L)1%/e5/
REAL YY)2#/10e17141Ce172/
REAL XX)1%/04C/
REAL GG)Y1%/7.0/
Cx*#%x%xBB AND C ARE THE LYAPUNOvV CONsSIANID>
BB=1.
C=1-O

Cxx%¥%x%xA —-DO LOOP- SHOULD RERPLACE

C THERE E
N=1

Cx¥x¥¥%xA ~DO LOOP-~ SHOULD REPLACE

C THERE E
J=1
sSQt=L)J

RUN=FREE

XISTS MORE THAN ONE VvALUE

IN

IHE FOLLOWING >(AtEMEN

IHE GG ARRAY.

THE FOLLOWING STATEMENT

XISTS MORE THAN ONE VALUE IN THE L ARRAY.

*¥HL)J*¥%) ] e e GOINX%X/240

B= —ysF&e2y/%

wHEN

WHEN

Cxx%*¥%%¥THE FOLLOWING DO LUQOP ITERATIONS SHOULD COINCIDE WITH

INWHICH X AND Y ARRAYS ARE RUN TOGETHER.

C NUMBER ON VALUES IN THE X AND/OR Yy ARRAYS.
DO 9999 KK=1,2
CH*x%#%x%xIN THIS POSITION CONTROL STATEMENTS)IF® ARE PLACED TO
C MANIPULATE THE MANNER
Cx#%%x*THE FOLLOWING DO LOOP CONTROLS THE NUMBER OF ITERATIONS
C MINUS ONE.
DO 1UCO K=1,51

Cx*%x%THE FOL

C NOW FIND X

X1=1le =
X2=~1e

IF)YIK*
IF)-Y)K

C NOW WE JuUMP
IF)Y)K*
IF)YIK*
[F)Y)IK*

C NOwW WE FIND

666 IFYyX)K*®
IF)X)K*
IF)X)K*
IFYX)IK*
GO T0 9

77 IF)X)K*
IF)X)K*

LOWING 1F STATEMENTS CONIROL
C OF X AND Y AT THE COMMFNCEMENT OF EACH SERIES OF
IFIK «EQe 1% Y)K*¥=YY}KK*
IF)IK «EQe 1% X)K¥#=XX)1%

FOR EACH BOUNDARY

LY J#=Y jK*
—L )y JERY ) K*

20T eUa0%X3=—)10ee L)J¥¥Y)K*,

*eGTeOs0¥X4=)a—L)JREY)KH

TO THE BOUNDARY SET FOR Y=0,GT O + LT 0

«GTe GoO% GO TO 666
eLTe GoC*¥ GO TO 777
«EQe CoU* GO TO 888
THF REGION OF OCCUPATION
«GTe X1¥REGION=1
oLEe X1 «ANDe XIK¥* oGEe
elLEe X2 +ANDe X)K¥* «GE.
«LTe X3¥REGION=2

0o
«GTe X4#*¥REGION=1
eLEe X4 o«ANDe X)K¥* oGEe

X2*¥REGION=5
X3#¥REGION=3

AL1¥REGION=4

PROGRAM STATEMENTS

96

IHE INIITAL VALUES
ITERATION.

L)J*%SQRT) ) 1e e GGINXEHY )K¥ /2 4 %%
L)JR#SQRT) =) 1eeCGIN®XXY )KH* /2 4%

23

25
26
27
28
29
30
31e
32
33.
34
35
3561
36
37
38
39,
40e
G1e
42
43
44,
45
46
47
48
49
50
51
52
53
54
55
56
57
58e
59



888

500

IF)X)K* oaLEe X1 #ANDe X)K%* oGEe X2*REGION=6
IF)X)IK%* oL Te X2¥REGION=2
GO TO 900

IF)IX)IK#* +GEe X1*¥REGION=1
IF)X)K* oGE. X1*¥GO TO 900

IFIX)K* oLEe X2¥REGION=2
IF)X)K* +LEs X2%GO TO 900
WRITE)6232%X25X1

GO TO 9999

CONTINUE

C KNOWING THE OCCUPIED REGION WE NOW FIND THE NEXT STEP

11

22

33

44

55

66

950

1000
9999
19399

$DATA
35TOP

IF)K «EQe 1%*WRITE)})69s30%GGIN*,1L ) J%,CsB8
IF)REGION «EQe 1%GO TO 11
IFIREGION «FQe 2%GO T0.22
IFIREGION .EQ. 3%GO TO 33
IFIREGION «EQe 4%GO TO 44
IFYREGION .EQe 5%#GO TO 55
IF)REGION .EQe 6%GO TO 66
D=—1e
ZZ=)X)IK#* oL )JHE®Y)KH oD¥¥%2 —DASQL¥*Y)K*
X)Kal%¥==D#SQRT)ZZ%=D =L)J¥**¥Y)K¥
GO TO 950
D=ele0
ZZ=)XIK¥* L) JRFY JK* D¥#K2 —DESQLH*Y)K*
X)Ke1%#==D*SQRT)ZZ#-D —L)J**Y)K*
GO TO 950
D==140
ZZ=)X)K¥* oL )I¥¥Y)KFE —DH*¥X2 —DRSQL*Y)K*
X)Kel%¥==D¥SQRT)}ZZ%-D =~L)J¥*Y)K*
GO T0O 950
D=1e0
ZZ=)XIK# oL} JRHY)K¥® =DH¥*2 ~DISQL*Y)K*¥
XIKel#*==-DX¥SQRT)ZZ2#-D =L }J¥*Y)K*
GO TO 950
==1e0
ZZ=—D*SQL*¥Y)K#*
XIKel*¥=—D#SQRT)ZZ% —-D =L)J**¥Y)K#*
GO TO 950
D=elel
ZZ=—-D*SQL*Y)K#*
X)Kel*=—D*SQRT)ZZ% =D =~L)J%**Y)K*

CONTINUE

YIKel¥=Y)K* o D

VIK#=X)K##¥%2 JC#X)K##*Y)K® (BBX*Y)K**%D
I=K-1
WRITE)S6531#]4X)K¥9Y)K*9yREGION,V)IK*
CONTINUE

CONTINUE

CONTINUE

RETURN

END

PROGRAM STATEMENTS (cont)
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60
61
62
63
64
65.
66
67
68
69
700
T1le.
T2
T3
The
75
76
T7e
78
79
80
81le.
B2
83
84
85
B6 e
87
88
89«
90.
91l.
92
93
94 o
95.
96
97 .
98
99.
100
101,
102
103.
104
105
106,
107.
108
109
110.
111.
112
113,
114e
115
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150000
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B GT61T
-Je26154
=e 57072
=Ua 8526(.‘-
-1.10529
-16 32475
-1650430
-1a62725
-1,64546
lo263032
~1a 1(!805
lati2434
-1.10811

10912434

~lo.10811
1302434
~le10811
1,72434
-lo1lu811
1,072434
-1,10811
1,02434
-1.10811
1e02434
-1, 10811
le(' 2434
-1,10811
1402434
-1.10811

)= 1471000

Y(K)= -0, 172000
Y{K)= -1.10000
Y{K)= -210000
Y(K)= -3410000
Y{K)= =441 0000
Y(K)= ~54100300
Y{(K)= ~64 10000
Y{K)= ~7. 10000
Y{K)= -8410000
Y{K)= -34100600
Y(K)}= -10,09999
Y{K)= -11.09999
Y{K)= =12,09999
Y{K)= -13.099S9
Y{(K)= =-14409999
Y{K)= =15409999
Y{(Kl= —16406999
Y{(K}= =174.009999
Y{K)= -=18,06999
Y(K)I= =17409999
Y{K)= =16,09999
Y{K)= =15,05999
Y(K)= ~144N19999
Y{K}= ~13409999
Y(K)= =12,09599
Y{K)= =11,09999
YIKY= =100%999
YK )= -9409999
Y(K)= -8,09999
Y(K)= ~T74N5G699
Y(K)= -6409599
Y(K)= -5409999
Y{K}= -4406599
Y(¥ )= ~3409999
Y{K)= -2¢09999
Y{(K)= -1406999
Y{(K)= -(1419999
Y{K}Y= -~ (90701
Y(K}= -0.09999
Y{K)= 0, 20001
Y(K}= -0,09999
Y(K)= 0e90201
Y{KI= -04 193993
Y(K)= Qs 90001
Y{K})= ~Na03999
Y(«)= Ce SGAN]L
Y{K)= ~1409999
Y{(K)= Ne90J01
Y{K)= -0 05999
Y{Ki= Ce 90001
Y{K)= -0e09999
Y(K)= Qe 3CCOC1
Y{K)= ~) (19999
Y(K)= Ne 900C1
Y{K}= -0409999
Y(K)= 0.90001
Y{K}= ~0e 19399
Y(K}= 0690101

TYPICAL READOUT DATA
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L=045000

REGION=
REGION=
REGICON=
REGION=
REGION=

REGIGN="

REGION=
REGICN=
REGION=
REGION=
REGION=
REG ION=
REGION=
REGICN=
REG ION=
REGICN=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGICN=
REGION=
REGICN=
REGION=
REG ION=
REGINN=
REGION=
REGICN=
REGION=
REGICN=
REGICN=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REGION=
REG ION=
REGION=
REGION=
REGION=
REGION=
REGION=

o mtrLn0\n0~m<)\no~m\r\n0-ﬁO‘m-buJerhJvanJerhJNIUhJN'UA)van)Pfﬂh-Hoapfwrdh‘Hndh*Hodr-h'Hhﬂw
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